Suppr超能文献

小鼠蓝斑核区神经元特性的变化。

Variations of neuronal properties in the region of locus coeruleus of mice.

机构信息

Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.

Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.

出版信息

Brain Res. 2024 Dec 15;1845:149289. doi: 10.1016/j.brainres.2024.149289. Epub 2024 Oct 22.

Abstract

Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.

摘要

蓝斑核中的神经元传统上被视为同质群体。最近的研究开始揭示它们在多个层次上的异质性,从分子组成到投射靶标。为了进一步揭示蓝斑核中神经元特性的变化,我们采用了基于遗传的标记方法来识别这些神经元。我们的数据显示,蓝斑核区域的神经元具有多种不同的脉冲波形,包括相当一部分窄脉冲单元。虽然所有宽脉冲单元都具有规则的波形极性(负-正偏转),但窄脉冲单元可以根据相反的波形极性进一步分为两类。在麻醉状态下,宽脉冲单元的动作电位发放率高于窄脉冲单元。在清醒状态下,只有一种亚型的窄脉冲单元表现出快速放电表型。这些神经元对光遗传刺激的潜伏期也较长。原位杂交进一步支持蓝斑核核心区存在一小部分 GABA 能神经元。总之,我们的数据揭示了蓝斑核区域神经元之间的特征差异,并表明电生理鉴定的窄脉冲神经元中有一部分可能是快速放电中间神经元,它们的快速放电特征被麻醉所掩盖。

相似文献

1
Variations of neuronal properties in the region of locus coeruleus of mice.
Brain Res. 2024 Dec 15;1845:149289. doi: 10.1016/j.brainres.2024.149289. Epub 2024 Oct 22.
2
Identification of a Group of GABAergic Neurons in the Dorsomedial Area of the Locus Coeruleus.
PLoS One. 2016 Jan 19;11(1):e0146470. doi: 10.1371/journal.pone.0146470. eCollection 2016.
3
The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System.
Neuron. 2018 Sep 5;99(5):1055-1068.e6. doi: 10.1016/j.neuron.2018.07.037. Epub 2018 Aug 16.
4
Active control of arousal by a locus coeruleus GABAergic circuit.
Nat Neurosci. 2019 Feb;22(2):218-228. doi: 10.1038/s41593-018-0305-z. Epub 2019 Jan 14.
5
Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector.
Brain Res. 2016 Jun 15;1641(Pt B):274-90. doi: 10.1016/j.brainres.2016.02.023. Epub 2016 Feb 19.
6
Juxtacellular recordings from identified neurons in the mouse locus coeruleus.
Eur J Neurosci. 2024 Jul;60(1):3659-3676. doi: 10.1111/ejn.16368. Epub 2024 Jun 13.
8
GABAergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice.
Am J Physiol Cell Physiol. 2013 May 1;304(9):C844-57. doi: 10.1152/ajpcell.00399.2012. Epub 2013 Feb 7.
9
Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus.
J Neurophysiol. 2021 Apr 1;125(4):1191-1201. doi: 10.1152/jn.00677.2020. Epub 2021 Feb 10.
10
GABAergic Neurons in the Dorsal-Intermediate Lateral Septum Regulate Sleep-Wakefulness and Anesthesia in Mice.
Anesthesiology. 2021 Sep 1;135(3):463-481. doi: 10.1097/ALN.0000000000003868.

本文引用的文献

1
Juxtacellular recordings from identified neurons in the mouse locus coeruleus.
Eur J Neurosci. 2024 Jul;60(1):3659-3676. doi: 10.1111/ejn.16368. Epub 2024 Jun 13.
4
Pupil diameter is not an accurate real-time readout of locus coeruleus activity.
Elife. 2022 Feb 2;11:e70510. doi: 10.7554/eLife.70510.
5
Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice.
Elife. 2022 Jan 26;11:e71720. doi: 10.7554/eLife.71720.
6
Representational drift in primary olfactory cortex.
Nature. 2021 Jun;594(7864):541-546. doi: 10.1038/s41586-021-03628-7. Epub 2021 Jun 9.
7
Coadaptation of the chemosensory system with voluntary exercise behavior in mice.
PLoS One. 2020 Nov 25;15(11):e0241758. doi: 10.1371/journal.pone.0241758. eCollection 2020.
8
Locus coeruleus: a new look at the blue spot.
Nat Rev Neurosci. 2020 Nov;21(11):644-659. doi: 10.1038/s41583-020-0360-9. Epub 2020 Sep 17.
10
Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry.
J Neurosci. 2020 Apr 15;40(16):3250-3267. doi: 10.1523/JNEUROSCI.2158-19.2020. Epub 2020 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验