Wang Ruiying, Chen Ruo-Lan, Wu Chan, Zhang Xiao-Cheng, Wu Wei-Yin, Dai Cuilian, Wang Yan, Li Gang
Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian 361000, China.
Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
J Adv Res. 2025 Sep;75:473-489. doi: 10.1016/j.jare.2024.10.017. Epub 2024 Oct 21.
Gut microbial homeostasis is closely associated with myocardial infarction (MI). However, little is known about how gut microbiota influences miRNAs-regulated MI.
This study aims to elucidate the connections between miR-30a-5p, MI, gut microbiota, and gut microbial metabolite-related pathways, to explore potential strategy for preventing and treating MI.
We evaluated the effects of knocking out (KO) or overexpressing (OE) miR-30a-5p on MI by assessing cardiac structure and function, myocardial enzyme levels, and apoptosis. Then, we applied 16S rDNA sequencing and metabolomics to explore how intestinal microecology and its microorganisms affect miR-30a-5p-regulated MI.
The results showed that KO exacerbated MI, whereas OE improved MI damage, compared to the wild-type (WT) mice. KO exacerbated intestinal barrier structure deterioration and further downregulated the expression of Cloudin-1, Occludin, and ZO-1 in MI mice. 16S rDNA sequencing-analyzed gut microbiome of KO and WT mice found that KO mainly reduced g_Lactobacillus. Transplanting fecal microorganisms from KO mice aggravated MI damage in WT mice. However, administering probiotics (mainly containing Lactobacillus) helped neutralize these damages. Intriguingly, fecal microbiota transplantation from OE mice reduced MI damage. Analysis of intestinal microbial metabolites in KO and WT mice found that KO may mainly affect ABC transporters. ABCC1 was identified as the target of KO-aggravated MI. Furthermore, fecal transplantation microorganisms of MI patients aggravated MI injury in mice and miR-30a-5p and ABCC1 were involved in the process.
Our findings demonstrate that miR-30a-5p regulates MI by affecting intestinal microbiota homeostasis and targeting ABCC1. This highlights the critical importance of maintaining a healthy gut microbiota homeostasis in MI management.
肠道微生物群稳态与心肌梗死(MI)密切相关。然而,关于肠道微生物群如何影响miRNA调节的心肌梗死,我们知之甚少。
本研究旨在阐明miR-30a-5p、心肌梗死、肠道微生物群和肠道微生物代谢物相关途径之间的联系,以探索预防和治疗心肌梗死的潜在策略。
我们通过评估心脏结构和功能、心肌酶水平和细胞凋亡,来评估敲除(KO)或过表达(OE)miR-30a-5p对心肌梗死的影响。然后,我们应用16S rDNA测序和代谢组学来探索肠道微生态及其微生物如何影响miR-30a-5p调节的心肌梗死。
结果显示,与野生型(WT)小鼠相比,敲除miR-30a-5p会加重心肌梗死,而过表达则可改善心肌梗死损伤。敲除会加剧肠道屏障结构恶化,并进一步下调心肌梗死小鼠中Claudin-1、Occludin和ZO-1的表达。对敲除和野生型小鼠的肠道微生物群进行16S rDNA测序分析发现,敲除主要减少了g_乳酸杆菌。将敲除小鼠的粪便微生物移植到野生型小鼠中会加重心肌梗死损伤。然而,施用益生菌(主要含有乳酸杆菌)有助于中和这些损伤。有趣的是,将过表达小鼠的粪便微生物群进行移植可减轻心肌梗死损伤。对敲除和野生型小鼠的肠道微生物代谢物进行分析发现,敲除可能主要影响ABC转运蛋白。ABCC1被确定为敲除加重心肌梗死的靶点。此外,心肌梗死患者的粪便移植微生物会加重小鼠的心肌梗死损伤,且miR-30a-5p和ABCC1参与了这一过程。
我们的研究结果表明,miR-30a-5p通过影响肠道微生物群稳态和靶向ABCC1来调节心肌梗死。这凸显了在心肌梗死管理中维持健康肠道微生物群稳态的至关重要性。