Suppr超能文献

运用数据融合与多重填补法校正自我报告暴露中的错误分类:一项关于大麻使用与凶杀受害情况的病例对照研究。

Using data fusion with multiple imputation to correct for misclassification in self-reported exposure: a case-control study of cannabis use and homicide victimization.

作者信息

Lee Seonghun, Li Guohua, Chihuri Stanford, Yu Yuanzhi, Chen Qixuan

机构信息

Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.

Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.

出版信息

Inj Epidemiol. 2024 Oct 23;11(1):57. doi: 10.1186/s40621-024-00545-x.

Abstract

BACKGROUND

Cannabis use has been causally linked to violent behaviors in experimental and case studies, but its association with homicide victimization has not been rigorously assessed through epidemiologic research.

METHODS

We performed a case-control analysis using two national data systems. Cases were homicide victims from the National Violent Death Reporting System (NVDRS), and controls were participants from the National Survey on Drug Use and Health (NSDUH). While the NVDRS contained toxicological testing data on cannabis use, the NSDUH only collected self-reported data, and thus the potential misclassification in the self-reported data needed to be corrected. We took a data fusion approach by concatenating the NSDUH with a third data system, the National Roadside Survey of Alcohol and Drug Use by Drivers (NRS), which collected toxicological testing and self-reported data on cannabis use for drivers. The data fusion approach provided multiple imputations (MIs) of toxicological testing results on cannabis use for the participants in the NSDUH, which were then used in the case-control analysis. Bootstrap was used to obtain valid statistical inference.

RESULTS

The analyses revealed that cannabis use was associated with 3.55-fold (95% CI: 2.75-4.35) increased odds of homicide victimization. Alcohol use, being Black, male, aged 21-34 years, and having less than a high school education were also significantly associated with increased odds of homicide victimization.

CONCLUSIONS

Cannabis use is a major risk factor for homicide victimization. The data fusion with MI method is useful in integrative data analysis for harmonizing measures between different data sources.

摘要

背景

在实验研究和案例研究中,大麻使用与暴力行为存在因果关系,但尚未通过流行病学研究对其与凶杀案受害情况的关联进行严格评估。

方法

我们使用两个国家数据系统进行了病例对照分析。病例为来自国家暴力死亡报告系统(NVDRS)的凶杀案受害者,对照为来自国家药物使用和健康调查(NSDUH)的参与者。虽然NVDRS包含大麻使用的毒理学检测数据,但NSDUH仅收集自我报告数据,因此需要纠正自我报告数据中可能存在的错误分类。我们采用了数据融合方法,将NSDUH与第三个数据系统——国家驾驶员酒精和药物使用路边调查(NRS)合并,该调查收集了驾驶员大麻使用的毒理学检测和自我报告数据。数据融合方法为NSDUH的参与者提供了大麻使用毒理学检测结果的多重填补(MIs)数据,然后将其用于病例对照分析。采用自助法获得有效的统计推断。

结果

分析显示,大麻使用与凶杀案受害几率增加3.55倍(95%置信区间:2.75 - 4.35)有关。饮酒、黑人、男性、年龄在21 - 34岁以及高中以下学历也与凶杀案受害几率增加显著相关。

结论

大麻使用是凶杀案受害的主要风险因素。采用多重填补的数据融合方法在整合不同数据源测量方法的综合数据分析中很有用。

相似文献

本文引用的文献

9
Suppression of play fighting by amphetamine: effects of catecholamine antagonists, agonists and synthesis inhibitors.
Pharmacol Biochem Behav. 1984 May;20(5):747-55. doi: 10.1016/0091-3057(84)90194-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验