Gao Haoyang, Yang Guofeng, Song Wen, Su Kunmei, Zhang Maliang, Li Zhenhuan
State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, P. R. China.
School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China.
Small. 2025 Jan;21(1):e2407008. doi: 10.1002/smll.202407008. Epub 2024 Oct 23.
Due to their excellent alkali resistance and chemical stability, polyphenylene sulfide (PPS) fabric membranes are widely used in alkaline water electrolysis (AWE) for hydrogen production. However, traditional PPS membranes suffer from poor hydrophilicity, low airtightness, and high area resistance, resulting in high energy consumption and reduced safety in industrial applications. This study addresses the aforementioned issues by coupling 3-(2,3-epoxy propoxy) propyl trimethoxy silane (KH560) via self-condensation to the PPS membrane and blending it with self-synthesized yttrium-stabilized zirconia nanoparticles (YSZNPs). The YSZNPs are loaded onto the modified PPS fiber surface through dip-coating and hot-pressing processes, forming a micro-mechanical interlocking structure that enhances the overall performance of the membrane in practical hydrogen production applications. The findings indicate that the developed composite membrane demonstrate outstanding hydrophilicity, minimal area resistance (0.21 Ω cm), and elevated bubble point pressure (2.93224 bar). Significantly, tests on gas purity indicate that the produced hydrogen and oxygen attain purities of 99.90% and 99.75%, respectively, when evaluated at a current density of 1.5 A cm. Moreover, after 500 h of electrolysis testing in a simulated industrial environment, minimal decline in membrane performance is observed, highlighting the competitive edge of this composite membrane in the current AWE market.
由于具有出色的耐碱性和化学稳定性,聚苯硫醚(PPS)织物膜被广泛应用于碱性水电解(AWE)制氢领域。然而,传统的PPS膜存在亲水性差、气密性低和面积电阻高的问题,导致工业应用中能耗高且安全性降低。本研究通过3-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH560)自缩合与PPS膜偶联,并将其与自合成的钇稳定氧化锆纳米颗粒(YSZNPs)共混,解决了上述问题。通过浸涂和热压工艺将YSZNPs负载到改性PPS纤维表面,形成微机械互锁结构,提高了膜在实际制氢应用中的整体性能。研究结果表明,所制备的复合膜具有出色的亲水性、最小的面积电阻(0.21 Ω cm)和较高的泡点压力(2.93224 bar)。值得注意的是,气体纯度测试表明,在1.5 A cm的电流密度下评估时,产生的氢气和氧气纯度分别达到99.90%和99.75%。此外,在模拟工业环境中进行500小时的电解测试后,膜性能的下降极小,突出了这种复合膜在当前AWE市场中的竞争优势。