Guo Kang, Li Daojun, Li Yan, Wang Xiaoqing, Wang Chunfei, Zhu Yanbin, Wu Chengyun, Hu Zhubing
The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
Sanya Institute, Henan University, Sanya, China.
Plant Cell Environ. 2025 Feb;48(2):1329-1343. doi: 10.1111/pce.15246. Epub 2024 Oct 23.
Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na/H antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.
根系结构(RSA)是一种关键的植物性状,它决定了植物吸收水分和养分的能力。在本研究中,我们描述了一种在根系发育中存在养分依赖性缺陷的突变体,该缺陷影响主根和侧根。通过筛选侧根发育缺陷鉴定出的这种突变体,被命名为dlr1-1。dlr1-1突变体表现出侧根出现受损,而非侧根原基(LRP)形成缺陷,特别是在低钾(K)条件下。这种损伤可能源于dlr1-1突变导致的细胞增殖受抑制。低钾特异性地导致dlr1-1突变体中水杨酸(SA)积累,这与SA生物合成基因的上调一致。此外,向野生型植物(B73)外源施加SA可模拟dlr1-1表型。相反,用SA生物合成抑制剂2-氨基茚-2-膦酸处理dlr1-1突变体可部分恢复侧根出现,表明SA水平升高可能是该突变体发育缺陷的原因。MutMap分析和等位性测试证实,dlr1-1突变体的表型是由于Na/H反向转运蛋白ZmNHX7缺失所致。此外,施加NaCl会加剧dlr1-1突变体的表型,表明dlr1-1突变体的根系缺陷依赖于离子稳态。总之,我们的研究结果表明,玉米DLR1/NHX7在低钾条件下对根系发育至关重要。