Center for Alternatives to Animal Testing (CAAT), Doerenkamp-Zbinden-Chair for Evidence-based Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
CAAT-Europe, University of Konstanz, Germany.
ALTEX. 2024;41(4):567-587. doi: 10.14573/altex.2409211.
The validation of new approach methods (NAMs) in toxicology faces significant challenges, including the integration of diverse data, selection of appropriate reference chemicals, and lengthy, resource-intensive consensus processes. This article proposes an artificial intelligence (AI)-based approach, termed e-validation, to optimize and accelerate the NAM validation process. E-vali-dation employs advanced machine learning and simulation techniques to systematically design validation studies, select informative reference chemicals, integrate existing data, and provide tailored training. The approach aims to shorten current decade-long validation timelines, using fewer resources while enhancing rigor. Key components include the smart selection of reference chemicals using clustering algorithms, simulation of validation studies, mechanistic validation powered by AI, and AI-enhanced training for NAM education and implementation. A centralized dashboard interface could integrate these components, streamlining workflows and providing real-time decision support. The potential impacts of e-validation are extensive, promising to accel-erate biomedical research, enhance chemical safety assessment, reduce animal testing, and drive regulatory and commercial innovation. While the integration of AI and machine learning offers sig-nificant advantages, challenges related to data quality, complexity of implementation, scalability, and ethical considerations must be addressed. Real-world validation and pilot studies are crucial to demonstrate the practical benefits and feasibility of e-validation. This transformative approach has the potential to revolutionize toxicological science and regulatory practices, ushering in a new era of predictive, personalized, and preventive health sciences.
新方法验证(NAM)在毒理学中面临重大挑战,包括整合多种数据、选择适当的参考化学品以及冗长的、资源密集型的共识过程。本文提出了一种基于人工智能(AI)的方法,称为 e 验证,以优化和加速 NAM 验证过程。E-validation 使用先进的机器学习和模拟技术来系统地设计验证研究、选择信息丰富的参考化学品、整合现有数据并提供定制培训。该方法旨在缩短当前长达十年的验证时间线,同时使用更少的资源提高严谨性。关键组成部分包括使用聚类算法智能选择参考化学品、模拟验证研究、由 AI 提供的机制验证以及用于 NAM 教育和实施的 AI 增强培训。集中式仪表板界面可以集成这些组件,简化工作流程并提供实时决策支持。e 验证的潜在影响广泛,有望加速生物医学研究、增强化学品安全评估、减少动物测试,并推动监管和商业创新。虽然 AI 和机器学习的整合带来了巨大的优势,但必须解决数据质量、实施复杂性、可扩展性和道德考虑等相关挑战。实际验证和试点研究对于展示 e 验证的实际效益和可行性至关重要。这种变革性方法有可能彻底改变毒理学科学和监管实践,开创预测、个性化和预防性健康科学的新时代。