Suppr超能文献

毒理学的可能未来——概率风险评估。

The probable future of toxicology - probabilistic risk assessment.

机构信息

Johns Hopkins University, Bloomberg School of Public Health and Whiting School of Engineering, Center for Alternatives to Animal Testing (CAAT), Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Baltimore, MD, USA.

L'Oréal, Research & Innovation, Clichy, France.

出版信息

ALTEX. 2024;41(2):273-281. doi: 10.14573/altex.2310301. Epub 2024 Jan 12.

Abstract

Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated AI models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public.

摘要

由于现有风险评估方法的局限性,以及新的机器学习方法来预测危害和风险的工具,概率风险评估越来越受到重视。越来越复杂的人工智能模型可以应用于大量的暴露和危害数据,不仅可以预测特定终点,还可以估计风险评估结果的不确定性。这为从确定性方法向更概率性方法转变提供了基础,但也增加了过程的复杂性,因为它需要更多的资源和人力专业知识。在监管机构完全接受概率范式之前,仍有一些挑战需要克服。基于之前的白皮书(Maertens 等人,2022 年),一个研讨会讨论了实施这种基于人工智能的概率危害评估的前景、挑战和前进道路。展望未来,我们将看到从分类到概率和剂量依赖性危害结果的转变,对数据匮乏物质应用毒理学关注的内部阈值,承认用户友好的开源软件,毒理学家需要提高理解和解释人工智能模型的专业知识,以及向公众诚实地沟通风险评估中的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验