Domínguez-García Pablo, Pinto Jose R, Akrap Ana, Jeney Sylvia
Departamento de Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain.
Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32304, USA.
Appl Phys Lett. 2024 Oct 21;125(17):173702. doi: 10.1063/5.0224003.
We study the high-frequency, micro-mechanical response of suspensions composed of cardiac and skeletal muscle myosin by optical trapping interferometry. We observe that in low ionic strength solutions, upon the addition of magnesium adenosine triphosphate (MgATP), myosin suspensions radically change their micro-mechanics properties, generating a viscoelastic fluid characterized by a complex modulus similar to a suspension of worm-like micelles. This transduction of energy, from chemical to mechanical, may be related to the relaxed states of myosin, which regulate muscle contractility and can be involved in the etiology of many myopathies. Within an analogous generic mechanical response, cardiac and skeletal myosin suspensions provide different stress relaxation times, elastic modulus values, and characteristic lengths. These discrepancies probably rely on the dissimilar physiological functions of cardiac and skeletal muscle, on the different MgATPase hydrolysis rates of cardiac and skeletal myosins, and on the observed distinct cooperative behavior of their myosin heads in the super-relaxed state. studies like these allow us to understand the foundations of muscle cell mechanics on the micro-scale, and may contribute to the engineering of biological materials whose micro-mechanics can be activated by energy regulators.
我们通过光镊干涉测量法研究了由心肌和骨骼肌肌球蛋白组成的悬浮液的高频微机械响应。我们观察到,在低离子强度溶液中,加入三磷酸腺苷镁(MgATP)后,肌球蛋白悬浮液的微机械性能发生了根本性变化,产生了一种粘弹性流体,其复模量类似于蠕虫状胶束悬浮液。这种从化学能到机械能的能量转换可能与肌球蛋白的松弛状态有关,肌球蛋白的松弛状态调节肌肉收缩力,并可能参与许多肌病的病因。在类似的一般机械响应中,心肌和骨骼肌肌球蛋白悬浮液提供不同的应力松弛时间、弹性模量值和特征长度。这些差异可能取决于心肌和骨骼肌不同的生理功能、心肌和骨骼肌肌球蛋白不同的MgATP酶水解速率,以及观察到的它们的肌球蛋白头部在超松弛状态下不同的协同行为。这样的研究使我们能够在微观尺度上理解肌肉细胞力学的基础,并可能有助于工程设计可通过能量调节剂激活其微机械性能的生物材料。