Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306.
Microbial Sciences Institute, Yale University, West Haven, CT 06516.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2311883121. doi: 10.1073/pnas.2311883121. Epub 2024 Feb 22.
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
心肌具有独特的特性,它永远不会休息;所有心肌细胞在每次心跳时都会收缩,这需要一个复杂的控制机制来调节心输出量以满足生理需求。钙离子浓度的变化调节细肌丝的激活。一个单独但相关的机制调节粗肌丝的激活,粗肌丝释放足够的肌球蛋白头部与细肌丝结合,从而产生所需的力。粗肌丝含有额外的非肌球蛋白蛋白,肌球蛋白结合蛋白 C 和titin,后者是将施加的张力传递到粗肌丝的蛋白。这三种蛋白如何相互作用以控制粗肌丝的激活尚不清楚。在这里,我们使用缺乏外源性药物的冷冻水合人心肌肌原纤维的 3D 图像重建表明,粗肌丝的结构提供了三个肌球蛋白激活水平,对应于每个 429Å 重复中的三个肌球蛋白头部冠。在一个冠中,肌球蛋白头部几乎完全激活且无序。在另一个冠中,许多肌球蛋白头部处于非活性状态,有序排列成称为相互作用头部模体的结构。在第三个冠中,肌球蛋白头部有序排列成相互作用头部模体,但肌球蛋白结合蛋白 C 会影响该模体的稳定性。我们认为,这种控制层次结构解释了许多长度依赖性激活以及心肌控制中的伸展激活的影响。