Suppr超能文献

用于改善公共卫生的翻译到政策的学习循环。

The translation-to-policy learning cycle to improve public health.

作者信息

Kilbourne Amy M, Braganza Melissa Z, Bravata Dawn M, Tsai Jack, Nelson Richard E, Meredith Alex, Myrie Kenute, Ramoni Rachel

机构信息

Office of Research and Development, Veterans Health Administration, U.S. Department of Veterans Affairs Washington DC USA.

Department of Learning Health Sciences University of Michigan Ann Arbor Michigan USA.

出版信息

Learn Health Syst. 2024 Oct 11;8(4):e10463. doi: 10.1002/lrh2.10463. eCollection 2024 Oct.

Abstract

OBJECTIVE

Learning Health Systems (LHSs) have not directly informed evidence-based policymaking. The Translation-to-Policy (T2P) Learning Cycle aligns scientists, end-users, and policymakers to support a repeatable roadmap of innovation and quality improvement to optimize effective policies toward a common public health goal. We describe T2P learning cycle components and provide examples of their application.

METHODS

The T2P Learning Cycle is based on the U.S. Department of Veterans Affairs (VA) Office of Research and Development and Quality Enhancement Research Initiative (QUERI), which supports research and quality improvement addressing national public health priorities to inform policy and ensure programs are evidence-based and work for end-users. Incorporating LHS infrastructure, the T2P Learning Cycle is responsive to the Foundations for Evidence-based Policymaking Act, which requires U.S. government agencies to justify budgets using evidence.

RESULTS

The learning community (patients, providers, clinical/policy leaders, and investigators) drives the T2P Learning Cycle, working toward one or more specific, shared priority goals, and supports a repeatable cycle of evidence-building and evaluation. Core T2P Learning Cycle functions observed in the examples from housing/economic security, precision oncology, and aging include governance and standard operating procedures to promote effective priority-setting; complementary research and quality improvement initiatives, which inform ongoing data curation at the learning system level; and sustainment of continuous improvement and evidence-based policymaking.

CONCLUSIONS

The T2P Learning Cycle integrates research translation with evidence-based policymaking, ensuring that scientific innovations address public health priorities and serve end-users through a repeatable process of research and quality improvement that ensures policies are scientifically based, effective, and sustainable.

摘要

目的

学习型卫生系统(LHSs)尚未直接为循证决策提供信息。政策转化(T2P)学习循环使科学家、终端用户和政策制定者保持一致,以支持一个可重复的创新和质量改进路线图,从而朝着共同的公共卫生目标优化有效政策。我们描述了T2P学习循环的组成部分,并提供了其应用示例。

方法

T2P学习循环基于美国退伍军人事务部(VA)研发与质量提升研究倡议办公室(QUERI),该办公室支持针对国家公共卫生优先事项的研究和质量改进,以为政策提供信息,并确保项目基于证据且对终端用户有效。T2P学习循环纳入了LHS基础设施,以响应《循证决策基础法案》,该法案要求美国政府机构用证据来证明预算的合理性。

结果

学习社区(患者、提供者、临床/政策领导者和研究人员)推动T2P学习循环,朝着一个或多个具体的、共同的优先目标努力,并支持一个可重复的证据构建和评估循环。在住房/经济安全、精准肿瘤学和老龄化等示例中观察到的T2P学习循环的核心功能包括促进有效确定优先事项的治理和标准操作程序;补充性研究和质量改进举措,这些举措为学习系统层面正在进行的数据管理提供信息;以及持续改进和循证决策的维持。

结论

T2P学习循环将研究转化与循证决策相结合,确保科学创新解决公共卫生优先事项,并通过一个可重复的研究和质量改进过程为终端用户服务,该过程确保政策基于科学、有效且可持续。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54bf/11493547/67ecabd80569/LRH2-8-e10463-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验