Bazhina Evgeniya S, Shmelev Maxim A, Gogoleva Natalia V, Babeshkin Konstantin A, Kurganskii Ivan V, Efimov Nikolay N, Fedin Matvey V, Kiskin Mikhail A, Eremenko Igor L
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russian Federation.
Dalton Trans. 2024 Nov 19;53(45):18161-18174. doi: 10.1039/d4dt01779j.
The reactions of VOSO·3HO with Na(cbdc) (cbdc - dianion of cyclobutane-1,1-dicarboxylic acid) and lanthanide(III) nitrates taken in a molar ratio of 1 : 2 : 1 were found to yield a series of isostructural heterometallic compounds [NaLn(VO)(cbdc)(HO)] (1Ln, Ln = Tb, Dy, Ho, Er, Tm, Yb). These compounds are constructed from trinuclear anionic units [Ln(VO)(cbdc)(HO)] ({LnV}) linked by Na ions into 1D polymeric chains. The crystal structures of 1Dy and 1Er were determined by single-crystal X-ray diffraction (XRD), and their isostructurality with 1Tb, 1Ho, 1Tm, and 1Yb was proved by powder X-ray diffraction (PXRD). According to alternating current (ac) magnetic susceptibility measurements, 1Dy, 1Er, and 1Yb exhibited field-induced slow relaxation of magnetization. Compound 1Er is the first representative of Er-V single-molecule magnets. Measuring the temperature dependences of the phase memory time () for 1Dy and 1Yb using pulsed EPR spectroscopy allowed us to observe the phenomenon of phase relaxation enhancement (PRE) at temperatures below 30 K. In future, this phenomenon may contribute to the evaluation of relaxation times of the lanthanide ions.
发现摩尔比为1∶2∶1的VOSO₄·3H₂O与Na(cbdc)(cbdc为环丁烷-1,1-二羧酸二价阴离子)和镧系(III)硝酸盐反应生成一系列同构的异金属化合物[NaLn(VO)(cbdc)(H₂O)](1Ln,Ln = Tb、Dy、Ho、Er、Tm、Yb)。这些化合物由三核阴离子单元[Ln(VO)(cbdc)(H₂O)]({LnV})通过Na⁺离子连接成一维聚合物链构成。通过单晶X射线衍射(XRD)测定了1Dy和1Er的晶体结构,并通过粉末X射线衍射(PXRD)证明了它们与1Tb、1Ho、1Tm和1Yb的同构性。根据交流(ac)磁化率测量,1Dy、1Er和1Yb表现出场诱导的磁化缓慢弛豫。化合物1Er是Er-V单分子磁体的首个代表。使用脉冲EPR光谱测量1Dy和1Yb的相记忆时间()的温度依赖性,使我们能够观察到在低于30 K的温度下的相弛豫增强(PRE)现象。未来,这种现象可能有助于评估镧系离子的弛豫时间。