Folkestad Sarai Dery, Koch Henrik
Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway.
J Phys Chem A. 2024 Nov 7;128(44):9688-9694. doi: 10.1021/acs.jpca.4c06271. Epub 2024 Oct 24.
Multilevel coupled cluster theory offers reduced scaling computation of intensive properties in systems that are too large for standard coupled cluster calculations. A significant benefit of the multilevel coupled cluster framework is the possibility of calculating intensive properties that are not tightly localized if an appropriate set of active orbitals is used. Correlated natural transition orbitals (CNTOs) are tailored to describe excitation processes. For multilevel coupled cluster singles and doubles (MLCCSD) and singles and perturbative doubles (MLCC2) calculations, the construction of CNTOs generally becomes the computational bottleneck. Here, we demonstrate how CNTOs can be obtained with operations, eliminating the -scaling steps involved in the original approach. This reduction in scaling moves the bottleneck of MLCC2 and MLCCSD calculations from the active orbital space preparation to the MLCC2 and MLCCSD equations with -scaling.
多级耦合簇理论为那些对于标准耦合簇计算来说过大的系统中的强度性质提供了低标度计算。多级耦合簇框架的一个显著优点是,如果使用一组合适的活性轨道,就有可能计算那些不是紧密定域的强度性质。相关自然跃迁轨道(CNTOs)是为描述激发过程而定制的。对于多级耦合簇单双激发(MLCCSD)和单激发与微扰双激发(MLCC2)计算,CNTOs的构建通常会成为计算瓶颈。在此,我们展示了如何通过 操作来获得CNTOs,消除了原始方法中涉及的 标度步骤。这种标度的降低将MLCC2和MLCCSD计算的瓶颈从活性轨道空间准备转移到了具有 标度的MLCC2和MLCCSD方程。