Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
Langmuir. 2024 Nov 19;40(46):24405-24418. doi: 10.1021/acs.langmuir.4c02972. Epub 2024 Oct 24.
Short peptide assemblies that form supramolecular hydrogels are stabilized by both intermolecular noncovalent interactions among amino acid side chains and hydrogen bonding between peptide backbone amides. Previous research has emphasized the inclusion of aromatic amino acids in short peptide sequences, positing that aromatic π-π interactions contribute significantly to inducing efficient hydrogelation i.e., at low minimum gelation concentrations (MGCs). However, herein, we demonstrate that additional hydrogen bonding interactions from amino acid side chains play a more pivotal role in the efficiency of peptide hydrogelation compared to aromatic π-π interactions. We investigated two sets of Fluorenylmethoxycarbonyl (Fmoc)-functionalized α-synuclein and human islet amyloid peptide fragments [Fmoc-NVGGAVVT (Syn-N) and Fmoc-NFGAIL (IAP-N)], substituting asparagine (N) with phenylalanine (Syn-F/IAP-F), alanine (Syn-A/IAP-A), and glutamine (Syn-Q/IAP-Q). This allowed us to explore the effects of aromatic (π-system), aliphatic (hydrophobic), and hydrogen bonding effects with varying chain lengths on hydrogel formation. Our results reveal that Syn-N and Syn-Q exhibit MGC of 0.03 and 0.05 wt %, respectively, classifying them as super hydrogelators (MGC < 0.1 wt %). These values are 4.0-6.6-fold lower than Syn-F and Syn-A, with Syn-N demonstrating greater efficiency than Syn-Q. Similarly, IAP-N exhibited a substantial decrease in MGC by 8.75, 3.75, and 2.5 folds compared to IAP-A, IAP-F, and IAP-Q, respectively. Experimental evidence and molecular dynamic simulation suggest that -CO-NH of asparagine side chains effectively engaged in hydrogen bonding, thereby immobilizing water molecules at low gelator concentrations. Although glutamine shares similar -CO-NH functionality, its hydrogelation efficiency is less pronounced compared to asparagine, likely due to its longer alkyl chain, which may hinder the formation of a hydrogen bonding network in the self-assembled structure compared to asparagine-containing peptides. These findings offer valuable insights for designing efficient peptide hydrogelators or lowering MGCs by substituting amino acids with asparagine/glutamine in peptide sequences. Additionally, modifying peptide properties through asparagine/glutamine substitution could optimize hydrogel properties for specific applications.
短肽组装体通过氨基酸侧链之间的分子间非共价相互作用和肽主链酰胺之间的氢键稳定。先前的研究强调了在短肽序列中包含芳香族氨基酸,假定芳香族π-π相互作用对诱导有效的水凝胶化(即低最小凝胶浓度(MGC))有很大贡献。然而,在此,我们证明与芳香族 π-π 相互作用相比,氨基酸侧链的额外氢键相互作用在肽水凝胶化的效率中起着更为关键的作用。我们研究了两组 Fmoc- 功能化的 α-突触核蛋白和人胰岛淀粉样肽片段[Fmoc-NVGGAVVT(Syn-N)和 Fmoc-NFGAIL(IAP-N)],用苯丙氨酸(Syn-F/IAP-F)、丙氨酸(Syn-A/IAP-A)和谷氨酰胺(Syn-Q/IAP-Q)取代天冬酰胺(N)。这使我们能够探索不同链长的芳香族(π 系统)、脂肪族(疏水性)和氢键效应对水凝胶形成的影响。我们的结果表明,Syn-N 和 Syn-Q 的 MGC 分别为 0.03 和 0.05wt%,属于超水凝胶剂(MGC<0.1wt%)。这些值比 Syn-F 和 Syn-A 低 4.0-6.6 倍,并且 Syn-N 比 Syn-Q 更有效。同样,与 IAP-A、IAP-F 和 IAP-Q 相比,IAP-N 的 MGC 分别降低了 8.75、3.75 和 2.5 倍。实验证据和分子动力学模拟表明,天冬酰胺侧链的-CO-NH 有效地参与了氢键,从而在低凝胶浓度下固定水分子。尽管谷氨酰胺具有相似的-CO-NH 官能团,但与天冬酰胺相比,其水凝胶化效率不那么明显,可能是因为其较长的烷基链可能会阻碍自组装结构中氢键网络的形成,而含有天冬酰胺的肽。这些发现为设计有效的肽水凝胶剂或通过在肽序列中用天冬酰胺/谷氨酰胺替代氨基酸来降低 MGC 提供了有价值的见解。此外,通过天冬酰胺/谷氨酰胺取代来修饰肽性质可以优化水凝胶的特性,以满足特定应用的需求。