Hoang Nam V, Walden Nora, Caracciolo Ludovico, Luoni Sofia Bengoa, Retta Moges, Li Run, Wolters Felicia C, Woldu Tina, Becker Frank F M, Verbaarschot Patrick, Harbinson Jeremy, Driever Steven M, Struik Paul C, van Amerongen Herbert, de Ridder Dick, Aarts Mark G M, Schranz M Eric
Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
Ann Bot. 2024 Oct 24. doi: 10.1093/aob/mcae179.
The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits.
We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops.
Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light.
The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
十字花科包含许多具有重要经济价值的作物,种内和种间表现出高度的表型变异。在一次共同的全基因组三倍化(WGT)事件(Br-α,约1590万年前)之后,不同的谱系分化和基因组变化导致了光合作用相关性状在形态、生化和生理方面的一系列差异。在此,对C3物种灰毛黎(Hirschfeldia incana)进行研究,因为它在高光条件下具有较高的光合速率。我们的目的是阐明导致灰毛黎基因组及其高光合作用性状的进化过程。
我们使用纳米孔和染色体构象捕获(Hi-C)技术重建了灰毛黎(奈梅亨,v2.0)的染色体水平基因组组装,大小为409Mb,N50为52Mb(比之前发表的支架水平v1.0组装提高了10倍)。随后,利用更新后的组装和注释,在一个比较系统发育基因组框架中,从十字花科祖先基因组块和相关二倍体化作物中研究灰毛黎的WGT历史。
灰毛黎(x = 7)与萝卜(Raphanus sativus,x = 9)具有广泛的基因组共线性。这两个物种与白菜型油菜(Brassica rapa,A基因组,x = 10)和甘蓝(B. oleracea,C基因组,x = 9)有一些共同之处,与黑芥(B. nigra,B基因组,x = 8)有其他相似之处。系统发育分析表明,灰毛黎和萝卜在芸苔属A/C和B基因组之间形成一个单系分支。我们推测,灰毛黎和萝卜的基因组是芸苔属A/C和B基因组类型杂交或渐渗的结果。我们的结果可能解释了已发表研究中关于灰毛黎和萝卜相对于“U三角”物种的系统发育位置所观察到的差异。对WGT保留基因拷贝的表达分析揭示了亚基因组表达差异,可能是由于新功能化或亚功能化。最后,我们强调了与灰毛黎中观察到的生理生化解剖适应性变化相关的基因,这些变化可能有助于其在高光下的高光合作用性状。
本研究中改进的灰毛黎基因组组装、注释和结果将为未来研究提供宝贵资源,以揭示其在高光条件下维持高光合效率能力的遗传基础,从而改善光合作用以提高农业产量。