Hart Kelle D, Hollobaugh Margaret J, Battiste Audrey M, Yun Tae Yong, Abraham Angela Pathickal, Hamidizirasefi Mohammad, Loscher Ian M, Chandler Bert D
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
J Am Chem Soc. 2024 Nov 6;146(44):30091-30103. doi: 10.1021/jacs.4c07539. Epub 2024 Oct 24.
Although hydrogen spillover is often invoked to explain anomalies in catalysis, spillover remains a poorly understood phenomenon. Hydrogen spillover (H*) is best described as highly mobile H atom equivalents that arise when H migrates from a metal nanoparticle to an oxide or carbon support. In the 60 years since its discovery, few methods have become available to quantify or characterize H*-support interactions. We recently showed infrared spectroscopy and volumetric chemisorption can quantify reversible H adsorption on Au/TiO catalysts, where adsorbed hydrogen exists as H* and interacts with titania surface hydroxyl (TiOH) groups. Here, we report parallel thermogravimetric analysis and Fourier transform infrared spectroscopy methods for systematically manipulating the surface TiOH density. We examine the role of surface hydroxylation on spillover thermodynamics using van't Hoff studies to determine apparent adsorption enthalpies and entropies at constant H* coverage, which is necessary to maintain constant H* translational entropy. Although surface TiOH groups are the likely adsorption sites, the data show removing hydroxyl groups increases spillover. This surprising finding─that adsorption increases as the adsorption site density decreases─is associated with improved thermodynamics on dehydroxylated surfaces. A strong adsorption enthalpy-entropy correlation implicates the changing surface entropy of the titania support itself (i.e., an initial state effect) is deeply intertwined with the H* configurational entropy. These effects are surprising and should apply to all low-coverage adsorbates where entropy terms dominate more traditional enthalpic considerations. Moreover, this study points toward a kinetic test for invoking spillover in a reaction mechanism: namely, in situ dehydroxylation should enhance spillover processes.
尽管氢溢流常被用来解释催化过程中的异常现象,但溢流仍是一种人们了解甚少的现象。氢溢流(H*)最好被描述为当氢从金属纳米颗粒迁移到氧化物或碳载体时产生的高迁移率氢原子等效物。自其发现后的60年里,几乎没有可用的方法来量化或表征H与载体的相互作用。我们最近表明,红外光谱和体积化学吸附可以量化Au/TiO催化剂上的可逆氢吸附,其中吸附的氢以H形式存在,并与二氧化钛表面羟基(TiOH)基团相互作用。在这里,我们报告了用于系统调节表面TiOH密度的平行热重分析和傅里叶变换红外光谱方法。我们使用范特霍夫研究来确定在恒定H覆盖度下的表观吸附焓和熵,以检验表面羟基化对溢流热力学的作用,这对于维持恒定的H平动熵是必要的。尽管表面TiOH基团可能是吸附位点,但数据表明去除羟基会增加溢流。这一惊人发现——吸附随着吸附位点密度的降低而增加——与脱羟基表面上改善的热力学有关。强烈的吸附焓-熵相关性表明,二氧化钛载体本身不断变化的表面熵(即初始状态效应)与H*的构型熵紧密相连。这些效应令人惊讶,应该适用于所有低覆盖度吸附质,在这些吸附质中,熵项比更传统的焓效应更占主导。此外,这项研究指出了在反应机理中引入溢流的动力学测试方法:即原位脱羟基应增强溢流过程。