Suppr超能文献

脑表型预测语言和执行功能可在不同的真实世界数据中生存:发展人群中的数据集转移。

Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations.

机构信息

Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.

出版信息

Dev Cogn Neurosci. 2024 Dec;70:101464. doi: 10.1016/j.dcn.2024.101464. Epub 2024 Oct 16.

Abstract

Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.

摘要

预测模型有可能提高神经影像学脑表型关联的可重复性和泛化性。然而,在另一个数据集上评估模型的工作尚未得到充分开展。在进行外部验证的研究中,人们明显缺乏对跨数据集特有偏差(即数据集转移)的泛化关注。研究设计旨在消除现实世界和最终临床应用所需要的站点间差异。在这里,我们严格测试了一系列预测模型在三个不同、未协调的发展样本中跨数据集泛化的能力:费城神经发育队列(n=1291)、健康大脑网络(n=1110)和人类连接组计划发育(n=428)。这些数据集具有高度的数据集间异质性,涵盖了年龄分布、性别、种族和民族少数群体代表性、招募地理位置、临床症状负担、功能磁共振成像任务、序列和行为测量方面的实质性变化。通过先进的方法学方法,我们证明了在不同的数据集特征中可以实现可重复和可泛化的脑-行为关联。结果表明,尽管存在大量的数据集间变异性,但基于功能连接组的预测模型具有潜在的稳健性。值得注意的是,对于 HCPD 和 HBN 数据集,最佳预测不是来自同一数据集的训练和测试(即交叉验证),而是来自跨数据集的预测。这一结果表明,在多样化的数据上进行训练可能会在某些情况下改善预测。总体而言,这项工作为未来在现实场景和临床环境中评估脑表型关联的泛化性提供了重要的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84f8/11538622/71fa83dab69a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验