Suppr超能文献

增强多帧脑图像中面部特征的去识别:一种生成对抗网络方法。

Enhancing facial feature de-identification in multiframe brain images: A generative adversarial network approach.

机构信息

Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.

Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

Prog Brain Res. 2024;290:141-156. doi: 10.1016/bs.pbr.2024.07.003. Epub 2024 Aug 31.

Abstract

The collection of head images for public datasets in the field of brain science has grown remarkably in recent years, underscoring the need for robust de-identification methods to adhere with privacy regulations. This paper elucidates a novel deep learning-based approach to deidentifying facial features in brain images using a generative adversarial network to synthesize new facial features and contours. We employed the precision of the three-dimensional U-Net model to detect specific features such as the ears, nose, mouth, and eyes. Results: Our method diverges from prior studies by highlighting partial regions of the head image rather than comprehensive full-head images. We trained and tested our model on a dataset comprising 490 cases from a publicly available head computed tomography image dataset and an additional 70 cases with head MR images. Integrated data proved advantageous, with promising results. The nose, mouth, and eye detection achieved 100% accuracy, while ear detection reached 85.03% in the training dataset. In the testing dataset, ear detection accuracy was 65.98%, and the validation dataset ear detection attained 100%. Analysis of pixel value histograms demonstrated varying degrees of similarity, as measured by the Structural Similarity Index (SSIM), between raw and generated features across different facial features. The proposed methodology, tailored for partial head image processing, is well suited for real-world imaging examination scenarios and holds potential for future clinical applications contributing to the advancement of research in de-identification technologies, thus fortifying privacy safeguards.

摘要

近年来,脑科学领域公共数据集的头部图像采集显著增长,这突显出需要稳健的去识别方法来遵守隐私法规。本文阐述了一种新颖的基于深度学习的方法,使用生成对抗网络来合成新的面部特征和轮廓,从而去除大脑图像中的面部特征。我们采用三维 U-Net 模型的精度来检测特定特征,如耳朵、鼻子、嘴巴和眼睛。结果:我们的方法与先前的研究不同,它突出了头部图像的部分区域,而不是全面的全头部图像。我们在一个包含 490 例来自公开的头部计算机断层扫描图像数据集和另外 70 例头部磁共振图像数据集的数据集上训练和测试了我们的模型。综合数据证明是有利的,结果很有前途。鼻子、嘴巴和眼睛的检测准确率达到 100%,而耳朵的检测在训练数据集中达到 85.03%。在测试数据集中,耳朵检测的准确率为 65.98%,验证数据集的耳朵检测准确率为 100%。对像素值直方图的分析表明,不同的面部特征之间,原始特征和生成特征之间的相似程度不同,这是通过结构相似性指数(SSIM)来衡量的。针对部分头部图像处理定制的这种方法非常适合实际成像检查场景,并有可能为未来的临床应用做出贡献,从而推动去识别技术的研究进展,加强隐私保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验