Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Human Research Protection Center, Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
J Med Internet Res. 2020 Dec 10;22(12):e22739. doi: 10.2196/22739.
High-resolution medical images that include facial regions can be used to recognize the subject's face when reconstructing 3-dimensional (3D)-rendered images from 2-dimensional (2D) sequential images, which might constitute a risk of infringement of personal information when sharing data. According to the Health Insurance Portability and Accountability Act (HIPAA) privacy rules, full-face photographic images and any comparable image are direct identifiers and considered as protected health information. Moreover, the General Data Protection Regulation (GDPR) categorizes facial images as biometric data and stipulates that special restrictions should be placed on the processing of biometric data.
This study aimed to develop software that can remove the header information from Digital Imaging and Communications in Medicine (DICOM) format files and facial features (eyes, nose, and ears) at the 2D sliced-image level to anonymize personal information in medical images.
A total of 240 cranial magnetic resonance (MR) images were used to train the deep learning model (144, 48, and 48 for the training, validation, and test sets, respectively, from the Alzheimer's Disease Neuroimaging Initiative [ADNI] database). To overcome the small sample size problem, we used a data augmentation technique to create 576 images per epoch. We used attention-gated U-net for the basic structure of our deep learning model. To validate the performance of the software, we adapted an external test set comprising 100 cranial MR images from the Open Access Series of Imaging Studies (OASIS) database.
The facial features (eyes, nose, and ears) were successfully detected and anonymized in both test sets (48 from ADNI and 100 from OASIS). Each result was manually validated in both the 2D image plane and the 3D-rendered images. Furthermore, the ADNI test set was verified using Microsoft Azure's face recognition artificial intelligence service. By adding a user interface, we developed and distributed (via GitHub) software named "Deface program" for medical images as an open-source project.
We developed deep learning-based software for the anonymization of MR images that distorts the eyes, nose, and ears to prevent facial identification of the subject in reconstructed 3D images. It could be used to share medical big data for secondary research while making both data providers and recipients compliant with the relevant privacy regulations.
在从二维(2D)序列图像重建三维(3D)渲染图像时,可以使用包含面部区域的高分辨率医学图像来识别受试者的面部,这可能构成共享数据时侵犯个人信息的风险。根据《健康保险流通与责任法案》(HIPAA)隐私规则,全脸照片图像和任何可比图像都是直接标识符,并被视为受保护的健康信息。此外,《通用数据保护条例》(GDPR)将面部图像归类为生物识别数据,并规定对生物识别数据的处理应施加特殊限制。
本研究旨在开发一种软件,该软件可以从数字成像和通信在医学(DICOM)格式文件中删除头部信息和二维切片图像级别的面部特征(眼睛、鼻子和耳朵),以对医学图像中的个人信息进行匿名化。
共使用 240 例颅脑磁共振(MR)图像来训练深度学习模型(来自阿尔茨海默病神经影像学倡议[ADNI]数据库的 144、48 和 48 例分别用于训练、验证和测试集)。为了克服小样本量问题,我们使用数据增强技术在每个时期创建 576 张图像。我们使用注意力门控 U-net 作为我们深度学习模型的基本结构。为了验证软件的性能,我们适应了一个由来自开放获取成像研究(OASIS)数据库的 100 例颅脑 MR 图像组成的外部测试集。
在两个测试集中(ADNI 的 48 例和 OASIS 的 100 例)均成功检测到并匿名化了面部特征(眼睛、鼻子和耳朵)。在二维图像平面和 3D 渲染图像中都手动验证了每个结果。此外,使用 Microsoft Azure 的人脸识别人工智能服务验证了 ADNI 测试集。通过添加用户界面,我们开发并分发了(通过 GitHub)名为“Deface program”的医学图像去匿名化软件,作为一个开源项目。
我们开发了基于深度学习的软件,用于对磁共振图像进行去匿名化,使眼睛、鼻子和耳朵变形,以防止在重建的 3D 图像中对受试者进行面部识别。它可用于共享医学大数据进行二次研究,同时使数据提供者和接收者都符合相关隐私法规。