College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an 710021, China.
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an 710021, China.
Int J Biol Macromol. 2024 Nov;281(Pt 2):135756. doi: 10.1016/j.ijbiomac.2024.135756. Epub 2024 Oct 24.
Designing cotton fiber (CF) based flexible electrode materials with both electrochemical energy storage and structural stability is crucial for the utilization of flexible supercapacitors in wearable devices. Nevertheless, the electrochemical properties of such materials are often constrained by suboptimal ion diffusion, a limited electroactive surface area, and inadequate structural integrity. Herein, Silver nanowires (AgNWs), NiCoAl hydrotalcite (NCA-LDH), and polypyrrole nanowires (PPy-NWs) are employed to construct a CF-based electrode material (PNHAS/CF) with high stability through a layer-by-layer self-assembly method. The PNHAS/CF with a high capacitance of 1207.58 mF cm at 5 mA cm due to the faster electronic transmission paths of AgNWs and PPy-NWs, and the high specific capacitance of NCA-LDHs. The NCA-LDH stabilizes the PPy-NWs molecular chain, and the PPy-NWs winding structure can further enhance the PNHAS/CF's structural stability and prevent the AgNWs network from being destroyed, which guarantees the exceptional 87.5 % capacitance retention after 2000 cycles. The constructed symmetrical supercapacitor shows an energy density of 36.28 μWh cm at 0.31 mW cm power density. The PNHAS/CF exhibits superb solar spectral absorptivity (~94.8 %) and outstanding solar heating performance. Surprisingly, the fiber-based flexible electrode material and the assembled supercapacitor are expected to find applications in wearable intelligent electronics.
设计兼具电化学储能和结构稳定性的棉纤维 (CF) 基柔性电极材料对于可穿戴设备中柔性超级电容器的应用至关重要。然而,这些材料的电化学性能往往受到离子扩散不理想、电活性表面积有限和结构完整性不足的限制。在此,通过层层自组装方法,使用银纳米线 (AgNWs)、镍钴铝水滑石 (NCA-LDH) 和聚吡咯纳米线 (PPy-NWs) 构建了一种具有高稳定性的 CF 基电极材料 (PNHAS/CF)。由于 AgNWs 和 PPy-NWs 的电子传输路径更快,以及 NCA-LDHs 的高比电容,PNHAS/CF 的电容高达 1207.58 mF cm 在 5 mA cm 时,具有较高的电容。NCA-LDH 稳定了 PPy-NWs 分子链,而 PPy-NWs 的缠绕结构可以进一步增强 PNHAS/CF 的结构稳定性,防止 AgNWs 网络被破坏,这保证了在 2000 次循环后卓越的 87.5%电容保持率。所构建的对称超级电容器在 0.31 mW cm 功率密度下显示出 36.28 μWh cm 的能量密度。PNHAS/CF 表现出出色的太阳能光谱吸收率(~94.8%)和卓越的太阳能加热性能。令人惊讶的是,纤维基柔性电极材料和组装的超级电容器有望在可穿戴智能电子产品中得到应用。