Kohay Hagay, Wielinski Jonas, Reiser Jana, Perkins Lydia A, Ristroph Kurt, Giraldo Juan Pablo, Lowry Gregory V
Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University Pittsburgh PA USA.
Environ Sci Nano. 2024 Oct 15;12(1):660-674. doi: 10.1039/d4en00547c. eCollection 2025 Jan 17.
Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding the foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide ( = 37 ± 1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47 ± 0.07, 1.25 ± 0.13, and 0.75 ± 0.1 μm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ∼2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ∼24% higher leaf CO assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants' physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.
层状双氢氧化物(LDH)纳米颗粒能够通过叶片将遗传物质、除草剂和营养物质输送到植物中,从而促进植物生长和提高产量。为了最大限度地发挥其功效并避免不必要的负面影响,需要了解纳米颗粒的叶面吸收途径。在本研究中,我们调查了通过叶片的正面(上表面)或背面(下表面)施用层状双氢氧化物(粒径 = 37 ± 1.5纳米)如何影响番茄植株对颗粒的吸收、营养物质的输送以及光合作用。施用于正面的LDH嵌入角质层,并在表皮细胞之间的垂周壁处积累。在背面,LDH颗粒穿透角质层的程度较小,但气孔的存在使其能够穿透到叶片更深的层次。因此,相对于角质层,LDH在正面、有气孔的背面和无气孔的背面叶片切段中的平均穿透深度分别为2.47 ± 0.07、1.25 ± 0.13和0.75 ± 0.1微米。此外,正面施用时LDH与角质层的共定位程度比背面低约2.3倍,表明其具有穿透角质层的能力。尽管正面气孔密度较低,但正面施用时LDH介导的镁(Mg)从叶片向根部的输送比背面施用高46%。此外,正面施用导致叶片二氧化碳同化率提高约24%,生物量积累也更多。背面施用效率较低至少部分是由于对气孔功能的干扰,这分别使气孔导度和蒸散量降低了28%和25%,限制了植物的光合作用。本研究阐明了通过叶片不同面的叶面输送途径如何影响其将活性剂输送到植物中的能力,进而影响植物的生理反应。这些知识有助于更有效地将纳米载体用于农业应用。