Wu Fengyu, Tian Fenyang, Li Menggang, Geng Shuo, Qiu Longyu, He Lin, Li Lulu, Chen Zhaoyu, Yu Yongsheng, Yang Weiwei, Hou Yanglong
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, 550025, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413250. doi: 10.1002/anie.202413250. Epub 2024 Nov 14.
The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/NiMo alloy (NiFe-LDH/NiMo) heterojunction electrocatalyst, featuring the NiMo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of NiMo with an impressive durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In situ spectra and first-principle simulations reveal that the adsorption of OH is significantly strengthened owing to the introduction of NiMo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/NiMo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm. The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.
晶格氧机制(LOM)赋予镍铁层状双氢氧化物(NiFe-LDH)优异的析氧反应(OER)活性,然而晶格氧的频繁析出和缓慢再生加剧了活性物种的溶解。在此,我们通过构建氢氧化镍铁/镍钼合金(NiFe-LDH/NiMo)异质结电催化剂克服了这一挑战,该催化剂以镍钼合金作为氧泵,为NiFe-LDH提供含氧中间体和电子。在LOM过程中,释放的晶格氧可以被含氧物种及时补充,平衡晶格氧的再生并确保耐久性的提高。因此,用NiMo修饰后,NiFe-LDH的耐久性显著增强,具有超过60小时的令人印象深刻的耐久性,远长于仅10小时的NiFe-LDH对应物。原位光谱和第一性原理模拟表明,由于引入了NiMo,OH的吸附显著增强,确保了晶格氧的快速再生。此外,基于NiFe-LDH/NiMo的阴离子交换膜水电解槽(AEMWE)在100 mA cm下表现出超过150小时的令人印象深刻的耐久性。氧泵策略为平衡晶格氧的析出和再生提供了机会,提高了高效OER催化剂的耐久性。