Suppr超能文献

基于可调表面带电纳米孔阵列的电渗流驱动 DNA-CNT 纳米马达。

Electroosmotic Flow-Driven DNA-CNT Nanomotor via Tunable Surface-Charged Nanopore Array.

机构信息

Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.

出版信息

J Phys Chem Lett. 2024 Nov 7;15(44):10950-10957. doi: 10.1021/acs.jpclett.4c02815. Epub 2024 Oct 25.

Abstract

Nanomotors are usually designed to work in liquid media and carry cargo; they exhibit excellent potential for biosensing and disease treatment applications due to their small size. Graphene and carbon nanotubes (CNTs) are crucial components of rotary nanomotors because of excellent mechanical properties and adaptability to the human body. Herein, we introduce a DNA-CNT-based nanomotor that achieves its rotational control through an array of nanopores with tunable surface charges. The findings demonstrate that by adjusting the surface charge density of the nanopores and the direction of electric field, a DNA strand can be sequentially captured by the nanopores, thereby rotating the connected CNT. The transition from a four-nanopore array to a six-nanopore array reveals that reducing the step angle to 60° significantly enhances the rotational stability of the nanomotor and reduces random fluctuations caused by Brownian motion. This method improves the control stability of the nanomotor, providing robust support for future applications in nanoscale manipulation.

摘要

纳米马达通常设计用于在液体介质中工作并携带货物;由于其体积小,它们在生物传感和疾病治疗应用方面表现出了优异的潜力。由于具有优异的机械性能和对人体的适应性,石墨烯和碳纳米管 (CNT) 是旋转纳米马达的关键组成部分。在此,我们介绍了一种基于 DNA-CNT 的纳米马达,它通过具有可调表面电荷的纳米孔阵列实现旋转控制。研究结果表明,通过调整纳米孔的表面电荷密度和电场方向,可以依次将 DNA 链捕获到纳米孔中,从而旋转连接的 CNT。从四纳米孔阵列到六纳米孔阵列的转变表明,将步角减小到 60°可显著提高纳米马达的旋转稳定性,并减少由布朗运动引起的随机波动。该方法提高了纳米马达的控制稳定性,为纳米级操作的未来应用提供了有力支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验