Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003 Israel.
Russell Berrie Nanotechnology Institute Technion-IIT, Haifa, 3200003 Israel.
ACS Nano. 2022 Jul 26;16(7):11405-11414. doi: 10.1021/acsnano.2c05391. Epub 2022 Jul 3.
The ability to routinely identify and quantify the complete proteome from single cells will greatly advance medicine and basic biology research. To meet this challenge of single-cell proteomics, single-molecule technologies are being developed and improved. Most approaches, to date, rely on the analysis of polypeptides, resulting from digested proteins, either in solution or immobilized on a surface. Nanopore biosensing is an emerging single-molecule technique that circumvents surface immobilization and is optimally suited for the analysis of long biopolymers, as has already been shown for DNA sequencing. However, proteins, unlike DNA molecules, are not uniformly charged and harbor complex tertiary structures. Consequently, the ability of nanopores to analyze unfolded full-length proteins has remained elusive. Here, we evaluate the use of heat denaturation and the anionic surfactant sodium dodecyl sulfate (SDS) to facilitate electrokinetic nanopore sensing of unfolded proteins. Specifically, we characterize the voltage dependence translocation dynamics of a wide molecular weight range of proteins (from 14 to 130 kDa) through sub-5 nm solid-state nanopores, using a SDS concentration below the critical micelle concentration. Our results suggest that proteins' translocation dynamics are significantly slower than expected, presumably due to the smaller nanopore diameters used in our study and the role of the electroosmotic force opposing the translocation direction. This allows us to distinguish among the proteins of different molecular weights based on their dwell time and electrical charge deficit. Given the simplicity of the protein denaturation assay and circumvention of the tailor-made necessities for sensing protein of different folded sizes, shapes, and charges, this approach can facilitate the development of a whole proteome identification technique.
从单个细胞中常规识别和定量完整蛋白质组的能力将极大地推动医学和基础生物学研究。为了应对单细胞蛋白质组学的这一挑战,正在开发和改进单分子技术。迄今为止,大多数方法都依赖于分析在溶液中或固定在表面上的被消化蛋白质产生的多肽。纳米孔生物传感是一种新兴的单分子技术,它避免了表面固定化,非常适合分析长生物聚合物,这已经在 DNA 测序中得到了证明。然而,与 DNA 分子不同,蛋白质不是均匀带电的,并且具有复杂的三级结构。因此,纳米孔分析未折叠全长蛋白质的能力仍然难以捉摸。在这里,我们评估了使用热变性和阴离子表面活性剂十二烷基硫酸钠(SDS)来促进未折叠蛋白质的电动纳米孔传感。具体来说,我们使用低于临界胶束浓度的 SDS 浓度,通过亚 5nm 固态纳米孔来表征广泛分子量范围的蛋白质(14 至 130kDa)的电压依赖性迁移动力学。我们的结果表明,蛋白质的迁移动力学明显慢于预期,这可能是由于我们研究中使用的纳米孔直径较小以及电渗流力与迁移方向相反的作用。这使我们能够根据停留时间和电电荷不足来区分不同分子量的蛋白质。鉴于蛋白质变性测定的简单性以及避免了针对不同折叠大小、形状和电荷的蛋白质进行传感的特殊定制需求,这种方法可以促进整个蛋白质组鉴定技术的发展。