Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, USA.
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA.
Biosensors (Basel). 2024 Oct 8;14(10):485. doi: 10.3390/bios14100485.
Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022. While routine screenings are vital for early detection, healthcare disparities persist, highlighting the need for equitable solutions. Recent advancements in cancer biomarker identification, particularly microRNAs (miRs), have improved early detection. MiR-21 is notably overexpressed in various cancers and can be a valuable diagnostic tool. Traditional detection methods, though accurate, are costly and complex, limiting their use in resource-limited settings. Paper-based electrochemical biosensors offer a promising alternative, providing cost-effective, sensitive, and rapid diagnostics suitable for point-of-care use. This study introduces an innovative electrochemical paper-based biosensor that leverages gold inkjet printing for the quantitative detection of miR-21. The biosensor, aimed at developing cost-effective point-of-care devices for low-resource settings, uses thiolated self-assembled monolayers to immobilize single-stranded DNA-21 (ssDNA-21) on electrodeposited gold nanoparticles (AuNPs) on the printed gold surface, facilitating specific miR-21 capture. The hybridization of ssDNA-21 with miR-21 increases the anionic barrier density, impeding electron transfer from the redox probe and resulting in a current suppression that correlates with miR-21 concentration. The biosensor exhibited a linear detection range from 1 fM to 1 nM miR-21 with a sensitivity of 7.69 fM µA cm and a rapid response time (15 min). With a low detection limit of 0.35 fM miR-21 in serum, the biosensor also demonstrates excellent selectivity against interferent species. This study introduces an electrochemical paper-based biosensor that uses gold inkjet printing to precisely detect miR-21, a key biomarker overexpressed in various cancers. This innovative device highlights the potential for cost-effective, accessible cancer diagnostics in underserved areas.
癌症是全球第二大死亡原因,2022 年有 970 万人因此死亡。虽然常规筛查对于早期发现至关重要,但医疗保健差距仍然存在,这凸显了需要公平的解决方案。最近在癌症生物标志物识别方面的进展,特别是 microRNAs (miRs),提高了早期检测的水平。miR-21 在各种癌症中表达过度,是一种有价值的诊断工具。虽然传统的检测方法准确,但成本高昂且复杂,限制了它们在资源有限的环境中的使用。基于纸张的电化学生物传感器提供了一种有前途的替代方案,可提供经济高效、灵敏且快速的诊断方法,适合在即时护理环境中使用。本研究介绍了一种创新的基于纸张的电化学生物传感器,该传感器利用金喷墨打印技术对 miR-21 进行定量检测。该生物传感器旨在为资源有限的环境开发经济高效的即时护理设备,使用巯基自组装单分子层将单链 DNA-21 (ssDNA-21) 固定在印刷金表面上电沉积的金纳米粒子 (AuNPs) 上,促进特定的 miR-21 捕获。ssDNA-21 与 miR-21 的杂交增加了阴离子障碍密度,阻碍了来自氧化还原探针的电子转移,导致与 miR-21 浓度相关的电流抑制。该生物传感器对 1 fM 至 1 nM miR-21 表现出线性检测范围,灵敏度为 7.69 fM µA cm,响应时间快(15 分钟)。该生物传感器在血清中对 miR-21 的检测限低至 0.35 fM,对干扰物质具有出色的选择性。本研究介绍了一种基于纸张的电化学生物传感器,该传感器使用金喷墨打印技术精确检测各种癌症中过度表达的关键生物标志物 miR-21。这种创新的设备突显了在服务不足的地区实现经济实惠、易于获取的癌症诊断的潜力。