Suppr超能文献

用于中风患者纸浆捏握康复的定制六杆外骨骼的设计与优化

Design and Optimization of a Custom-Made Six-Bar Exoskeleton for Pulp Pinch Grasp Rehabilitation in Stroke Patients.

作者信息

Andrés-Esperanza Javier, Iserte-Vilar José L, Roda-Casanova Víctor

机构信息

Department of Mechanical Engineering and Construction, Universitat Jaume I, 12071 Castellón, Spain.

出版信息

Biomimetics (Basel). 2024 Oct 11;9(10):616. doi: 10.3390/biomimetics9100616.

Abstract

Stroke often causes neuromotor disabilities, impacting index finger function in daily activities. Due to the role of repetitive, even passive, finger movements in neuromuscular re-education and spasticity control, this study aims to design a rehabilitation exoskeleton based on the pulp pinch movement. The exoskeleton uses an underactuated RML topology with a single degree of mobility, customized from 3D scans of the patient's hand. It consists of eight links, incorporating two consecutive four-bar mechanisms and the third inversion of a crank-slider. A two-stage genetic optimization was applied, first to the location of the intermediate joint between the two four-bar mechanisms and later to the remaining dimensions. A targeted genetic optimization process monitored two quality metrics: average mechanical advantage from extension to flexion, and its variability. By analyzing the relationship between these metrics and key parameters at different synthesis stages, the population evaluated is reduced by up to 96.2%, compared to previous studies for the same problem. This custom-fit exoskeleton uses a small linear actuator to deliver a stable 12.45 N force to the fingertip with near-constant mechanical advantage during flexion. It enables repetitive pulp pinch movements in a flaccid finger, improving rehabilitation consistency and facilitating home-based therapy.

摘要

中风常导致神经运动功能障碍,影响食指在日常活动中的功能。由于重复性甚至被动性手指运动在神经肌肉再训练和痉挛控制中的作用,本研究旨在设计一种基于指腹捏取动作的康复外骨骼。该外骨骼采用具有单一运动自由度的欠驱动RML拓扑结构,根据患者手部的3D扫描定制。它由八个连杆组成,包含两个连续的四杆机构和一个曲柄滑块的第三种倒置形式。应用了两阶段遗传优化,首先针对两个四杆机构之间中间关节的位置,然后针对其余尺寸。有针对性的遗传优化过程监测两个质量指标:从伸展到屈曲的平均机械优势及其变异性。通过分析这些指标与不同合成阶段关键参数之间的关系,与之前针对同一问题的研究相比,评估的种群数量最多可减少96.2%。这种定制的外骨骼使用一个小型线性致动器,在屈曲过程中以近乎恒定的机械优势向指尖提供稳定的12.45 N力。它能够在松弛手指中实现重复性指腹捏取动作,提高康复的一致性并便于居家治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/493f/11505203/e4b7f477de03/biomimetics-09-00616-g001.jpg

相似文献

2
Mechanical Design and Feasibility of a Finger Exoskeleton to Support Finger Extension of Severely Affected Stroke Patients.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:1268-1276. doi: 10.1109/TNSRE.2023.3243357. Epub 2023 Feb 15.
3
Design and Development of a Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation.
J Med Device. 2023 Jun 1;17(2):021002. doi: 10.1115/1.4056864. Epub 2023 Apr 17.
4
HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4867-4872. doi: 10.1109/EMBC44109.2020.9175332.
5
Attention Enhancement for Exoskeleton-Assisted Hand Rehabilitation Using Fingertip Haptic Stimulation.
Front Robot AI. 2021 May 21;8:602091. doi: 10.3389/frobt.2021.602091. eCollection 2021.
6
Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:567-572. doi: 10.1109/ICORR.2017.8009308.
7
Design and feasibility of the T-GRIP thumb exoskeleton to support the lateral pinch grasp of spinal cord injury patients.
IEEE Int Conf Rehabil Robot. 2022 Jul;2022:1-6. doi: 10.1109/ICORR55369.2022.9896595.
8
Stable Grasp Control With a Robotic Exoskeleton Glove.
J Mech Robot. 2020 Dec 1;12(6):061015. doi: 10.1115/1.4047724. Epub 2020 Jul 28.
9
Development of a Novel Low-profile Robotic Exoskeleton Glove for Patients with Brachial Plexus Injuries.
Rep U S. 2022 Oct;2022:11121-11126. doi: 10.1109/iros47612.2022.9981124. Epub 2022 Dec 26.

本文引用的文献

1
Recent Advances in Self-Powered Wearable Flexible Sensors for Human Gaits Analysis.
Nanomaterials (Basel). 2024 Jul 10;14(14):1173. doi: 10.3390/nano14141173.
2
Recent progress in self-powered multifunctional e-skin for advanced applications.
Exploration (Beijing). 2022 Jan 14;2(1):20210112. doi: 10.1002/EXP.20210112. eCollection 2022 Feb.
3
A NOVEL DESIGN OF A ROBOTIC GLOVE SYSTEM FOR PATIENTS WITH BRACHIAL PLEXUS INJURIES.
Proc ASME Des Eng Tech Conf. 2020 Aug;10. doi: 10.1115/detc2020-22348. Epub 2020 Nov 3.
4
Hand Rehabilitation Devices: A Comprehensive Systematic Review.
Micromachines (Basel). 2022 Jun 29;13(7):1033. doi: 10.3390/mi13071033.
5
6
Personalized Voice Activated Grasping System for a Robotic Exoskeleton Glove .
Mechatronics (Oxf). 2022 May;83. doi: 10.1016/j.mechatronics.2022.102745. Epub 2022 Feb 3.
7
Exoskeleton end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: systematic review and meta-analysis.
Top Stroke Rehabil. 2022 Dec;29(8):539-550. doi: 10.1080/10749357.2021.1967657. Epub 2021 Aug 21.
8
Design Criteria of Soft Exogloves for Hand Rehabilitation-Assistance Tasks.
Appl Bionics Biomech. 2020 Jul 20;2020:2724783. doi: 10.1155/2020/2724783. eCollection 2020.
9
Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use.
IEEE Trans Haptics. 2019 Oct-Dec;12(4):400-413. doi: 10.1109/TOH.2019.2924881. Epub 2019 Jun 25.
10
Hand Rehabilitation Robotics on Poststroke Motor Recovery.
Behav Neurol. 2017;2017:3908135. doi: 10.1155/2017/3908135. Epub 2017 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验