Rojas-Galván Rafael, García-Martínez José R, Cruz-Miguel Edson E, Álvarez-Alvarado José M, Rodríguez-Resendiz Juvenal
Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Queretaro 76010, Mexico.
Faculty of Electronics and Communications Engineering, Universidad Veracruzana, Poza Rica 93390, Mexico.
Biomimetics (Basel). 2024 Oct 21;9(10):649. doi: 10.3390/biomimetics9100649.
This study compares bio-inspired optimization algorithms for enhancing an ANN-based Maximum Power Point Tracking (MPPT) forecast system under partial shading conditions in photovoltaic systems. Four algorithms-grey wolf optimizer (GWO), particle swarm optimization (PSO), squirrel search algorithm (SSA), and cuckoo search (CS)-were evaluated, with the dataset augmented by perturbations to simulate shading. The standard ANN performed poorly, with 64 neurons in Layer 1 and 32 in Layer 2 (MSE of 159.9437, MAE of 8.0781). Among the optimized approaches, GWO, with 66 neurons in Layer 1 and 100 in Layer 2, achieved the best prediction accuracy (MSE of 11.9487, MAE of 2.4552) and was computationally efficient (execution time of 1198.99 s). PSO, using 98 neurons in Layer 1 and 100 in Layer 2, minimized MAE (2.1679) but had a slightly longer execution time (1417.80 s). SSA, with the same neuron count as GWO, also performed well (MSE 12.1500, MAE 2.7003) and was the fastest (987.45 s). CS, with 84 neurons in Layer 1 and 74 in Layer 2, was less reliable (MSE 33.7767, MAE 3.8547) and slower (1904.01 s). GWO proved to be the best overall, balancing accuracy and speed. Future real-world applications of this methodology include improving energy efficiency in solar farms under variable weather conditions and optimizing the performance of residential solar panels to reduce energy costs. Further optimization developments could address more complex and larger-scale datasets in real-time, such as integrating renewable energy sources into smart grid systems for better energy distribution.
本研究比较了用于增强光伏系统在部分阴影条件下基于人工神经网络的最大功率点跟踪(MPPT)预测系统的仿生优化算法。评估了四种算法——灰狼优化算法(GWO)、粒子群优化算法(PSO)、松鼠搜索算法(SSA)和布谷鸟搜索算法(CS),通过对数据集进行扰动来模拟阴影。标准人工神经网络表现不佳,第1层有64个神经元,第2层有32个神经元(均方误差为159.9437,平均绝对误差为8.0781)。在优化方法中,GWO第1层有66个神经元,第2层有100个神经元,实现了最佳预测精度(均方误差为11.9487,平均绝对误差为2.4552),并且计算效率高(执行时间为1198.99秒)。PSO第1层使用98个神经元,第2层使用100个神经元,最小化了平均绝对误差(2.1679),但执行时间稍长(1417.80秒)。与GWO神经元数量相同的SSA也表现良好(均方误差12.1500,平均绝对误差2.7003),并且是最快的(987.45秒)。CS第1层有84个神经元,第2层有74个神经元,可靠性较低(均方误差33.7767,平均绝对误差3.8547),速度较慢(1904.01秒)。事实证明,GWO总体上是最佳的,在精度和速度之间取得了平衡。该方法未来在实际中的应用包括提高可变天气条件下太阳能农场的能源效率,以及优化住宅太阳能板的性能以降低能源成本。进一步的优化发展可以实时处理更复杂和更大规模的数据集,例如将可再生能源集成到智能电网系统中以实现更好的能源分配。