Suppr超能文献

金融市场网络中的因果层次结构——由亥姆霍兹-霍奇-小平邦彦分解揭示

Causal Hierarchy in the Financial Market Network-Uncovered by the Helmholtz-Hodge-Kodaira Decomposition.

作者信息

Wand Tobias, Kamps Oliver, Iyetomi Hiroshi

机构信息

Institute of Theoretical Physics, University of Münster, Wilhelm-Klemm-Straße 9, 48149 Münster, Germany.

Center for Nonlinear Science, University of Münster, Corrensstr. 2, 48149 Münster, Germany.

出版信息

Entropy (Basel). 2024 Oct 11;26(10):858. doi: 10.3390/e26100858.

Abstract

Granger causality can uncover the cause-and-effect relationships in financial networks. However, such networks can be convoluted and difficult to interpret, but the Helmholtz-Hodge-Kodaira decomposition can split them into rotational and gradient components which reveal the hierarchy of the Granger causality flow. Using Kenneth French's business sector return time series, it is revealed that during the COVID crisis, precious metals and pharmaceutical products were causal drivers of the financial network. Moreover, the estimated Granger causality network shows a high connectivity during the crisis, which means that the research presented here can be especially useful for understanding crises in the market better by revealing the dominant drivers of crisis dynamics.

摘要

格兰杰因果关系可以揭示金融网络中的因果关系。然而,此类网络可能错综复杂且难以解读,但亥姆霍兹 - 霍奇 - 小平邦彦分解可以将它们分解为旋转分量和梯度分量,从而揭示格兰杰因果关系流的层次结构。利用肯尼斯·弗伦奇的商业部门回报时间序列,研究发现,在新冠疫情危机期间,贵金属和药品是金融网络的因果驱动因素。此外,估计的格兰杰因果关系网络在危机期间显示出高度的连通性,这意味着本文所呈现的研究通过揭示危机动态的主导驱动因素,对于更好地理解市场危机可能特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af6d/11507571/3129db29c664/entropy-26-00858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验