Suppr超能文献

单侧颞叶癫痫中白质破坏的估计疾病进展轨迹:一种数据驱动的机器学习方法。

Estimated Disease Progression Trajectory of White Matter Disruption in Unilateral Temporal Lobe Epilepsy: A Data-Driven Machine Learning Approach.

作者信息

Sone Daichi, Sato Noriko, Shigemoto Yoko, Beheshti Iman, Kimura Yukio, Matsuda Hiroshi

机构信息

Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.

Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan.

出版信息

Brain Sci. 2024 Sep 29;14(10):992. doi: 10.3390/brainsci14100992.

Abstract

BACKGROUND/OBJECTIVES: Although the involvement of progressive brain alterations in epilepsy was recently suggested, individual patients' trajectories of white matter (WM) disruption are not known.

METHODS

We investigated the disease progression patterns of WM damage and its associations with clinical metrics. We examined the cross-sectional diffusion tensor imaging (DTI) data of 155 patients with unilateral temporal lobe epilepsy (TLE) and 270 age/gender-matched healthy controls, and we then calculated the average fractional anisotropy (FA) values within 20 WM tracts of the whole brain. We used the Subtype and Stage Inference (SuStaIn) program to detect the progression trajectory of FA changes and investigated its association with clinical parameters including onset age, disease duration, drug-responsiveness, and the number of anti-seizure medications (ASMs).

RESULTS

The SuStaIn algorithm identified a single subtype model in which the initial damage occurs in the ipsilateral uncinate fasciculus (UF), followed by damage in the forceps, superior longitudinal fasciculus (SLF), and anterior thalamic radiation (ATR). This pattern was replicated when analyzing TLE with hippocampal sclerosis (n = 50) and TLE with no lesions (n = 105) separately. Further-progressed stages were associated with longer disease duration ( < 0.001) and a greater number of ASMs ( = 0.001).

CONCLUSIONS

the disease progression model based on WM tracts may be useful as a novel individual-level biomarker.

摘要

背景/目的:尽管最近有人提出进行性脑改变与癫痫有关,但个体患者白质(WM)破坏的轨迹尚不清楚。

方法

我们研究了WM损伤的疾病进展模式及其与临床指标的关联。我们检查了155名单侧颞叶癫痫(TLE)患者和270名年龄/性别匹配的健康对照者的横断面扩散张量成像(DTI)数据,然后计算了全脑20条WM束内的平均分数各向异性(FA)值。我们使用亚型和阶段推断(SuStaIn)程序来检测FA变化的进展轨迹,并研究其与包括发病年龄、病程、药物反应性和抗癫痫药物(ASM)数量在内的临床参数的关联。

结果

SuStaIn算法识别出一种单一亚型模型,其中初始损伤发生在同侧钩束(UF),随后是胼胝体、上纵束(SLF)和丘脑前辐射(ATR)受损。分别分析伴有海马硬化的TLE(n = 50)和无病变的TLE(n = 105)时,这种模式得到了重复。进一步进展的阶段与更长的病程(<0.001)和更多的ASM数量(=0.001)相关。

结论

基于WM束的疾病进展模型可能作为一种新的个体水平生物标志物有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a956/11506697/ad87e8a178c6/brainsci-14-00992-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验