Suppr超能文献

N6-甲基腺苷位点预测计算方法的综合综述与评估

Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites.

作者信息

Luo Zhengtao, Yu Liyi, Xu Zhaochun, Liu Kening, Gu Lichuan

机构信息

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China.

Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China.

出版信息

Biology (Basel). 2024 Sep 28;13(10):777. doi: 10.3390/biology13100777.

Abstract

N6-methyladenosine (mA) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide mA mapping have accelerated the accumulation of mA site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for mA site prediction. However, it is still a major challenge to precisely predict mA sites using in silico approaches. To advance the computational support for mA site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., , , , , , , , , and ). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on mA modification. We revisited 52 computational approaches published since 2015 for mA site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for mA identification and facilitate more rigorous comparisons of new methods in the future.

摘要

N6-甲基腺苷(mA)在细胞功能控制和基因表达中起着关键的调节作用。转录组范围的mA图谱测序技术的最新进展加速了单核苷酸水平上mA位点信息的积累,为开发mA位点预测的计算方法提供了更多高可信度的训练数据。然而,使用计算机方法精确预测mA位点仍然是一项重大挑战。为了加强对mA位点识别的计算支持,在此,我们精心整理了来自九个不同物种(即 、 、 、 、 、 、 、 、 )的13个最新基准数据集。这将有助于研究界对替代方法进行无偏评估,并支持未来关于mA修饰的研究。我们回顾了自2015年以来发表的52种用于mA位点识别的计算方法,包括30种基于传统机器学习的方法、14种基于深度学习的方法和8种基于集成学习的方法。我们从训练数据集、计算特征、计算方法、性能评估策略以及网络服务器/软件可用性等方面对这些计算方法进行了全面综述。使用这些基准数据集,我们对九个具有可用在线网站或独立软件的预测器进行了基准测试,并评估了它们的预测性能。我们发现深度学习和传统机器学习方法通常优于基于评分函数的方法。总之,本研究精心整理的基准数据集存储库和系统评估有助于为mA识别的最新计算方法的设计和实施提供信息,并便于未来对新方法进行更严格的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87db/11504118/ee212212ae81/biology-13-00777-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验