Suppr超能文献

用于理解心脏生物学与疾病的单细胞RNA测序及组合方法

Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease.

作者信息

Wang Le, Jin Bo

机构信息

Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China.

出版信息

Biology (Basel). 2024 Sep 30;13(10):783. doi: 10.3390/biology13100783.

Abstract

By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.

摘要

通过直接测量数百至数百万个单细胞中的多种分子特征,单细胞技术能够全面表征心脏中细胞的多样性。这些单细胞转录组和多组学研究正在改变我们对心脏发育和疾病的理解。与单维度检测相比,转录组与空间维度及其他组学的结合能够全面了解单细胞功能、微环境、动态过程及其相互关系。在本综述中,我们将介绍单细胞分辨率下心脏健康与疾病的最新进展;可用于转录组、基因组、表观基因组和蛋白质组分析的单细胞检测方法;单细胞多组学;以及它们未来的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8469/11504358/5900d4bab8c0/biology-13-00783-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验