Suppr超能文献

开发一种多变量模型,预测原发性醛固酮增多症患者肾上腺切除术后肾功能下降:一项大样本单中心研究。

Development of a multivariate model predictive of post-adrenalectomy renal function decline in patients with primary aldosteronism: a large-cohort single-center study.

机构信息

Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Department of Urology, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine, Hainan, 571437, China.

出版信息

World J Urol. 2024 Oct 25;42(1):592. doi: 10.1007/s00345-024-05308-3.

Abstract

PURPOSE

To develop a multivariate liniear model for predicting long-term (> 3 months) post-adrenalectomy renal function decline in patients with primary aldosteronism (PA). The model aims to help identify patients who may experience a significant decline in renal function after surgery.

METHODS

We retrospectively analyzed the clinical data of 357 patients who were diagnosed with PA and underwent adrenalectomy between September 2012 and February 2023. LASSO and multivariate linear regression analyses were used to identify significant risk factors for model construction. The models were further internally validated using bootstrap method.

RESULTS

Age (P < 0.001), plasma aldosterone concentration (PAC) measured in the upright-position (PAC, P = 0.066), PAC measured after saline infusion (PAC, P = 0.010), preoperative blood adrenocorticotropic-hormone level (ACTH, P = 0.048), preoperative estimated glomerular filtration rate (eGFR, P < 0.001) and immediate postoperative eGFR (P < 0.001) were finally included in a multivariate model predictive of post-adrenalectomy renal function decline and the coefficients were adjusted by internal validation. The final model is: predicted postoperative long-term (> 3 months) eGFR decline =-70.010 + 0.416age + 6.343lg PAC+4.802lg ACTH + 7.424lg PAC+0.637preoperative eGFR-0.438immediate postoperative eGFR. The predicted values are highly related to the observed values (adjusted R = 0.63).

CONCLUSION

The linear model incorporating perioperative clinical variables can accurately predict long-term (> 3 months) post-adrenalectomy renal function decline.

摘要

目的

建立预测原发性醛固酮增多症(PA)患者肾上腺切除术后长期(>3 个月)肾功能下降的多元线性模型。该模型旨在帮助识别术后肾功能可能显著下降的患者。

方法

我们回顾性分析了 2012 年 9 月至 2023 年 2 月期间接受肾上腺切除术的 357 例 PA 患者的临床资料。使用 LASSO 和多元线性回归分析确定模型构建的显著危险因素。采用 bootstrap 法对模型进行内部验证。

结果

年龄(P<0.001)、直立位血浆醛固酮浓度(PAC,P=0.066)、盐水输注后 PAC(PAC,P=0.010)、术前促肾上腺皮质激素水平(ACTH,P=0.048)、术前估算肾小球滤过率(eGFR,P<0.001)和术后即刻 eGFR(P<0.001)最终纳入预测肾上腺切除术后肾功能下降的多变量模型,通过内部验证调整系数。最终模型为:预测术后长期(>3 个月)eGFR 下降= -70.010+0.416年龄+6.343lgPAC+4.802lgACTH+7.424lgPAC+0.637术前 eGFR-0.438术后即刻 eGFR。预测值与观察值高度相关(调整 R=0.63)。

结论

纳入围手术期临床变量的线性模型可以准确预测肾上腺切除术后长期(>3 个月)肾功能下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验