Suppr超能文献

量子霍尔系统中的非线性边缘输运。

Nonlinear edge transport in a quantum Hall system.

作者信息

Isobe Hiroki, Nagaosa Naoto

机构信息

Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.

RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.

出版信息

Sci Adv. 2024 Oct 25;10(43):eado2704. doi: 10.1126/sciadv.ado2704.

Abstract

Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (-) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored. Among them, the quantum Hall current is a representative example. Realized in two-dimensional electronic systems under a strong magnetic field, the topological protection quantizes the Hall conductance in the unit of / (, elementary charge; and , Planck constant), of which the edge transport picture gives a good account. Here, we theoretically study the nonlinear - characteristic of the edge transport up to third order in . We find that nonlinearity arises in the Hall response from electron-electron interaction between the counterpropagating edge channels with the nonlinear energy dispersions. We also discuss possible experimental observations.

摘要

凝聚态物质中的非线性输运现象反映了电子态的几何性质、量子相干性和多体相关性。固体中的电流可分为:(i)欧姆电流,(ii)超电流,以及(iii)几何或拓扑电流。虽然前两类的非线性电流-电压(-)特性最近已成为广泛的研究课题,但最后一类的相关特性仍未得到探索。其中,量子霍尔电流就是一个典型例子。在强磁场下的二维电子系统中实现的拓扑保护,将霍尔电导以 / (,基本电荷;,普朗克常数)为单位进行量子化,其边缘输运图像能很好地解释这一现象。在此,我们从理论上研究了边缘输运高达三阶的非线性 - 特性。我们发现,具有非线性能量色散的反向传播边缘通道之间的电子 - 电子相互作用会在霍尔响应中产生非线性。我们还讨论了可能的实验观测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90a9/11639171/baa8ee9ca4db/sciadv.ado2704-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验