Suppr超能文献

蜿蜒的传导通道与量子化电荷传输的可调性

Meandering conduction channels and the tunable nature of quantized charge transport.

作者信息

Douçot Benoit, Kovrizhin Dmitry, Moessner Roderich

机构信息

Laboratoire de Physique Theorique et Hautes Energies, UMR 7589, CNRS and Sorbonne Université, Paris Cedex 05 75252, France.

Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, Cergy-Pontoise F-95302, France.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2410703121. doi: 10.1073/pnas.2410703121. Epub 2024 Sep 19.

Abstract

The discovery of the quantum Hall effect has established the foundation of the field of topological condensed matter physics. An amazingly accurate quantization of the Hall conductance, now enshrined in quantum metrology, is stable against any reasonable perturbation due to its topological protection. Conversely, the latter implies a form of censorship by concealing any local information from the observer. The spatial distribution of the current in a quantum Hall system is such a piece of information, which, thanks to spectacular recent advances, has now become accessible to experimental probes. It is an old question whether the original and intuitively compelling theoretical picture of the current, flowing in a narrow channel along the sample edge, is the physically correct one. Motivated by recent experiments imaging quantized current in a Chern insulator (Bi, Sb)[Formula: see text]Te[Formula: see text] heterostructure [Rosen et al., , 246602 (2022); Ferguson et al., , 1100-1105 (2023)], we theoretically demonstrate the possibility of a broad "edge state" generically meandering away from the sample boundary deep into the bulk. Further, we show that by varying experimental parameters one can continuously tune between the regimes with narrow edge states and meandering channels, all the way to the charge transport occurring primarily within the bulk. This accounts for various features observed in, and differing between, experiments. Overall, our findings underscore the robustness of topological condensed matter physics, but also unveil the phenomenological richness, hidden until recently by the topological censorship-most of which, we believe, remains to be discovered.

摘要

量子霍尔效应的发现奠定了拓扑凝聚态物理领域的基础。如今,量子计量学中确立的霍尔电导的惊人精确量化,因其拓扑保护而对任何合理扰动都具有稳定性。相反,后者意味着一种审查形式,即向观察者隐藏任何局部信息。量子霍尔系统中电流的空间分布就是这样一条信息,由于最近取得的惊人进展,现在实验探测已经能够获取该信息。电流沿着样品边缘在狭窄通道中流动,这种最初直观且引人注目的理论图景是否在物理上正确,这是一个古老的问题。受最近在陈绝缘体(Bi,Sb)[公式:见正文]Te[公式:见正文]异质结构中对量子化电流进行成像的实验[罗森等人,,246602(2022);弗格森等人,,1100 - 1105(2023)]的启发,我们从理论上证明了一种宽泛的“边缘态”通常从样品边界蜿蜒深入到体相中去的可能性。此外,我们表明,通过改变实验参数,可以在具有狭窄边缘态和蜿蜒通道的区域之间连续调节,一直到主要在体相中发生的电荷输运。这解释了实验中观察到的以及不同实验之间存在差异的各种特征。总体而言,我们的发现强调了拓扑凝聚态物理的稳健性,但也揭示了直到最近一直被拓扑审查所掩盖的现象学丰富性——我们相信,其中大部分仍有待发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db37/11441563/19e917b39938/pnas.2410703121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验