Suppr超能文献

海马区 CA3 中支持记忆的神经元动力学的机制。

Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3.

机构信息

Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.

Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA.

出版信息

Cell. 2024 Nov 27;187(24):6804-6819.e21. doi: 10.1016/j.cell.2024.09.041. Epub 2024 Oct 24.

Abstract

Hippocampal CA3 is central to memory formation and retrieval. Although various network mechanisms have been proposed, direct evidence is lacking. Using intracellular V recordings and optogenetic manipulations in behaving mice, we found that CA3 place-field activity is produced by a symmetric form of behavioral timescale synaptic plasticity (BTSP) at recurrent synapses among CA3 pyramidal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not the DG was required to update place cell activity based on the animal's movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Theoretical analyses further highlight the superior memory storage capacity of such networks, especially when dealing with correlated input patterns. This evidence elucidates the cellular and circuit mechanisms of learning and memory formation in the hippocampus.

摘要

海马 CA3 区对于记忆的形成和提取至关重要。尽管已经提出了各种网络机制,但缺乏直接证据。通过在行为小鼠中进行细胞内 V 记录和光遗传学操作,我们发现 CA3 位置场活动是由 CA3 锥体神经元之间的反复突触的对称形式的行为时间尺度突触可塑性(BTSP)产生的,而不是由来自齿状回(DG)的突触产生的。进一步的操作表明,来自内嗅皮层(EC)的兴奋性输入而不是 DG 的输入,对于根据动物的运动更新位置细胞活动是必需的。这些数据被一个计算模型所捕获,该模型使用 BTSP 和外部更新输入在在线学习条件下产生吸引子动力学。理论分析进一步强调了这种网络的优越的存储容量,特别是在处理相关输入模式时。这一证据阐明了海马体中学习和记忆形成的细胞和电路机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验