International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
Sci Total Environ. 2024 Dec 10;955:176916. doi: 10.1016/j.scitotenv.2024.176916. Epub 2024 Oct 23.
The wide use of nano‑titanium dioxide (nano-TiO) and its ubiquitous emission into aquatic environments are threatening environmental health. Ambient temperature can affect the aggregation state of nano-TiO in seawater, thus influencing the intake and physiological effects on marine species. We studied the physiological effects of mixed nano-TiO (a mixture of anatase and rutile crystals with an average particle size of 25 nm, P25) on mussels. Subsequently, we investigated the oxidative stress, immunotoxicity, neurotoxicity, and detoxification in Mytilus coruscus exposed to two different crystal structures of nano-TiO (anatase and rutile) at 100 μg/L concentration under marine heatwaves (MHWs, 28 °C). MHWs and nano-TiO exposure induced neurotoxicity and immune damage and caused dysregulation of redox balance in the gills. Moreover, MHWs exposure disturbed the glutathione system and detoxification function of mussels, resulting in enhanced toxicity of nano-TiO under co-exposure. Anatase exposure significantly impaired the antioxidant system and downregulated the relative expression of antioxidant-related genes (Nrf2 and Bcl-2), HSP-90, and immune parameters under MHWs, while producing higher ROS levels compared to rutile. Based on integrated biomarker response (IBR), mussels co-exposed to anatase and MHW showed the highest value (19.29). However, there was no significant difference in bioaccumulation of titanium between anatase (6.07 ± 0.47 μg/g) and rutile (5.3 ± 0.44 μg/g) exposures under MHWs. These results indicate that MHWs would elevate the potential hazard of nanoparticles to marine organisms.
纳米二氧化钛(nano-TiO)的广泛应用及其广泛排放到水生环境中,对环境健康构成了威胁。环境温度会影响纳米 TiO 在海水中的聚集状态,从而影响海洋物种的摄入和生理效应。我们研究了混合纳米 TiO(锐钛矿和金红石晶体的混合物,平均粒径为 25nm,P25)对贻贝的生理影响。随后,我们研究了在海洋热浪(MHWs,28°C)下,贻贝暴露于浓度为 100μg/L 的两种不同晶体结构的纳米 TiO(锐钛矿和金红石)时,氧化应激、免疫毒性、神经毒性和解毒作用。MHWs 和纳米 TiO 暴露导致神经毒性和免疫损伤,并导致鳃中氧化还原平衡失调。此外,MHWs 暴露扰乱了贻贝的谷胱甘肽系统和解毒功能,导致共暴露时纳米 TiO 的毒性增强。与金红石相比,锐钛矿暴露在 MHWs 下显著破坏了抗氧化系统,并下调了抗氧化相关基因(Nrf2 和 Bcl-2)、HSP-90 和免疫参数的相对表达,同时产生更高的 ROS 水平。基于综合生物标志物响应(IBR),在 MHWs 下共暴露于锐钛矿和 MHWs 的贻贝表现出最高值(19.29)。然而,在 MHWs 下,锐钛矿(6.07±0.47μg/g)和金红石(5.3±0.44μg/g)暴露之间钛的生物累积没有显著差异。这些结果表明,MHWs 会增加纳米颗粒对海洋生物的潜在危害。