Suppr超能文献

基于人工智能的再生医学当前挑战的解决方案。

AI-Based solutions for current challenges in regenerative medicine.

机构信息

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.

出版信息

Eur J Pharmacol. 2024 Dec 5;984:177067. doi: 10.1016/j.ejphar.2024.177067. Epub 2024 Oct 24.

Abstract

The emergence of Artificial Intelligence (AI) and its usage in regenerative medicine represents a significant opportunity that holds the promise of tackling critical challenges and improving therapeutic outcomes. This article examines the ways in which AI, including machine learning and data fusion techniques, can contribute to regenerative medicine, particularly in gene therapy, stem cell therapy, and tissue engineering. In gene therapy, AI tools can boost the accuracy and safety of treatments by analyzing extensive genomic datasets to target and modify genetic material in a precise manner. In cell therapy, AI improves the characterization and optimization of cell products like mesenchymal stem cells (MSCs) by predicting their function and potency. Additionally, AI enhances advanced microscopy techniques, enabling accurate, non-invasive and quantitative analyses of live cell cultures. AI enhances tissue engineering by optimizing biomaterial and scaffold designs, predicting interactions with tissues, and streamlining development. This leads to faster and more cost-effective innovations by decreasing trial and error. The convergence of AI and regenerative medicine holds great transformative potential, promising effective treatments and innovative therapeutic strategies. This review highlights the importance of interdisciplinary collaboration and the continued integration of AI-based technologies, such as data fusion methods, to overcome current challenges and advance regenerative medicine.

摘要

人工智能(AI)的出现及其在再生医学中的应用代表了一个重大机遇,有望解决关键挑战并改善治疗效果。本文探讨了人工智能(包括机器学习和数据融合技术)在再生医学中的应用,特别是在基因治疗、干细胞治疗和组织工程中的应用。在基因治疗中,人工智能工具可以通过分析大量基因组数据集,以精确的方式靶向和修饰遗传物质,从而提高治疗的准确性和安全性。在细胞治疗中,人工智能通过预测间充质干细胞(MSCs)等细胞产品的功能和效力,改善了对细胞产品的表征和优化。此外,人工智能增强了先进的显微镜技术,能够对活细胞培养物进行准确、非侵入性和定量分析。人工智能通过优化生物材料和支架设计、预测与组织的相互作用以及简化开发,增强了组织工程。这通过减少反复试验,实现了更快、更具成本效益的创新。人工智能和再生医学的融合具有巨大的变革潜力,有望提供有效的治疗方法和创新的治疗策略。本综述强调了跨学科合作和持续整合基于人工智能的技术(如数据融合方法)的重要性,以克服当前的挑战并推进再生医学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验