Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America.
Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Colleen Giblin Research Laboratories, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States of America.
Exp Neurol. 2025 Jan;383:115024. doi: 10.1016/j.expneurol.2024.115024. Epub 2024 Oct 24.
Amyotrophic lateral sclerosis (ALS) is a relatively common and invariably fatal, paralyzing motor neuron disease for which there are few treatment options. ALS is frequently associated with ubiquitin-positive motor neuronal aggregates, a pathology suggestive of perturbed proteostasis. Indeed, cellular chaperones, which are involved in protein trafficking and degradation often underlie familial ALS. Spinal muscular atrophy (SMA) is a second, common paralytic condition resulting from motor neuron loss and muscle atrophy. While SMA is now effectively treated, mechanisms underlying motor neuron degeneration in the disease remain far from clear. To address mechanistic questions about SMA, we recently identified a genetic modifier of the disease. The factor, a G470R variant in the constitutively expressed cellular chaperone, Hspa8, arrested motor neuron loss, prevented the abnormal accumulation of neurofilament aggregates at nerve terminals and suppressed disease. Hspa8 is best known for its role in autophagy. Amongst its many clients is the ALS-associated superoxide dismutase 1 (SOD1) protein. Given its suppression of the SMA phenotype, we tested potential disease-mitigating effects of Hspa8 in a mutant SOD1 mouse model of ALS. Unexpectedly, disease in mutant SOD1 mice expressing the G470R variant was aggravated. Motor performance of the mice deteriorated, muscle atrophy worsened, and lifespan shrunk even further. Paradoxically, SOD1 protein in spinal cord tissue of the mice was dramatically reduced. Our results suggest that Hspa8 modulates the ALS phenotype. However, rather than mitigating disease, the G470R variant exacerbates it.
肌萎缩侧索硬化症(ALS)是一种相对常见且不可避免致命的、瘫痪性运动神经元疾病,其治疗选择很少。ALS 常伴有泛素阳性运动神经元聚集物,这种病理学提示蛋白质稳态受到干扰。事实上,参与蛋白质运输和降解的细胞伴侣通常是家族性 ALS 的基础。脊髓性肌萎缩症(SMA)是第二种常见的瘫痪性疾病,由运动神经元丧失和肌肉萎缩引起。虽然 SMA 现在可以有效治疗,但该疾病中运动神经元退化的机制仍远未清楚。为了解决 SMA 的机制问题,我们最近确定了该疾病的一个遗传修饰因子。该因子是组成型表达的细胞伴侣 Hspa8 的 G470R 变体,可阻止运动神经元丧失,防止神经末梢异常积累神经丝聚集物,并抑制疾病。Hspa8 最出名的是其在自噬中的作用。在其众多客户中,有 ALS 相关的超氧化物歧化酶 1(SOD1)蛋白。鉴于其对 SMA 表型的抑制作用,我们在 ALS 的突变 SOD1 小鼠模型中测试了 Hspa8 的潜在疾病缓解作用。出乎意料的是,表达 G470R 变体的突变 SOD1 小鼠中的疾病恶化了。小鼠的运动性能恶化,肌肉萎缩加剧,寿命进一步缩短。矛盾的是,小鼠脊髓组织中的 SOD1 蛋白显著减少。我们的结果表明 Hspa8 调节 ALS 表型。然而,G470R 变体不是减轻疾病,而是使其恶化。