Department of Medicinal Chemistry, Uppsala University, BMC P.O. Box 574, SE-751 23, Uppsala, Sweden.
Innovation Strategy & External Liaison. Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
Int J Pharm. 2024 Dec 25;667(Pt A):124849. doi: 10.1016/j.ijpharm.2024.124849. Epub 2024 Oct 24.
For many biopharmaceuticals, subcutaneous (sc) administration is the only viable route. However, there is no in vitro method available accurately predicting the absorption profiles of subcutaneously injected pharmaceuticals. In this work, we show that a recently developed microfluidics method for interaction studies (MIS) has the potential to be useful in this respect. The method utilises the responsiveness of polyelectrolyte microgel networks to oppositely charged molecules as a means to monitor the interaction between peptides and hyaluronic acid (HA), a major constituent of the subcutaneous extracellular matrix. We use the method to determine parameters describing the strength of interaction between peptide and HA as well as the peptide's aggregation tendency and transport properties in HA networks. The results from MIS studies of the peptide drugs exenatide, pramlintide, vancomycin, polymyxin B, lanreotide, MEDI7219 and AZD2820 are compared with results from measurements with the commercially available SCISSOR system and in vivo absorption and bioavailability data from the literature. We show that both MIS and SCISSOR reveal differences in the peptides' diffusivity and tendency to aggregate in the presence of HA. We show that MIS is particularly good at discriminating between peptides forming aggregates stabilised by non-electrostatic forces in the presence of HA, and peptides forming complexes stabilised by electrostatic interactions with HA. The method provides two parameters that can be used to quantify the peptides' aggregation tendency, the one describing the peptide packing density in complexes with HA and the other the apparent diffusivity upon release in a medium of physiological ionic strength and pH. The order of the peptides when ranked by increasing binding strength at pH 7.4 determined with MIS is shown to be in agreement with the order when ranked by the apparent 1st order absorption rate constant (k) after sc administration in humans: lanreotide (Autogel) < exenatide (IRF) < AZD2820 < pramlintide < lanreotide (IRF) (IRF: Immediate release formulation). A correlation is found between the 1st order release rate constant determined with SCISSOR and k for lanreotide (Autogel), exenatide and AZD2820. A mechanism relating the magnitude of k to the peptides' charge is proposed.
对于许多生物制药来说,皮下(sc)给药是唯一可行的途径。然而,目前还没有一种可准确预测皮下注射药物吸收情况的体外方法。在这项工作中,我们表明,最近开发的用于相互作用研究的微流控方法(MIS)在这方面具有潜在的用途。该方法利用聚电解质微凝胶网络对相反电荷分子的响应作为监测肽与透明质酸(HA)之间相互作用的一种手段,HA 是皮下细胞外基质的主要成分。我们使用该方法确定描述肽与 HA 之间相互作用强度以及肽在 HA 网络中的聚集倾向和传输特性的参数。通过 MIS 研究艾塞那肽、普兰林肽、万古霉素、多粘菌素 B、兰瑞肽、MEDI7219 和 AZD2820 肽药物的结果与通过商业上可获得的 SCISSOR 系统进行的测量以及文献中体内吸收和生物利用度数据进行了比较。我们表明,MIS 和 SCISSOR 都揭示了在存在 HA 的情况下肽扩散率和聚集倾向的差异。我们表明,MIS 特别擅长区分在存在 HA 的情况下由非静电相互作用稳定的聚集体的肽和由与 HA 的静电相互作用稳定的复合物的肽。该方法提供了两个可用于量化肽聚集倾向的参数,一个描述了与 HA 形成复合物的肽的包装密度,另一个描述了在生理离子强度和 pH 的介质中释放时的表观扩散系数。用 MIS 按 pH7.4 时结合强度递增对肽进行排序的顺序与按 sc 给药后人类的表观一级吸收速率常数(k)递增对肽进行排序的顺序一致:兰瑞肽(Autogel)<艾塞那肽(IRF)<AZD2820<普兰林肽<兰瑞肽(IRF)(IRF:即时释放制剂)。发现用 SCISSOR 确定的一级释放速率常数与 lanreotide(Autogel)、exenatide 和 AZD2820 的 k 之间存在相关性。提出了一种将 k 的大小与肽的电荷相关联的机制。