Coticchio Giovanni, Bartolacci Alessandro, Cimadomo Valentino, Trio Samuele, Innocenti Federica, Borini Andrea, Vaiarelli Alberto, Rienzi Laura, Ahlström Aisling, Cimadomo Danilo
IVIRMA Global Research Alliance, IVIRMA ITALIA, Italy.
IVIRMA Global Research Alliance, 9.baby, Bergamo, Italy.
Hum Reprod. 2024 Dec 1;39(12):2663-2673. doi: 10.1093/humrep/deae239.
Can more reliable time cut-offs of embryo developmental incompetence be generated by combining time-lapse technology (TLT), artificial intelligence, and preimplantation genetics screening for aneuploidy (PGT-A)?
Embryo developmental incompetence can be better predicted by time cut-offs at multiple developmental stages and for different ranges of maternal age.
TLT is instrumental for the continual and undisturbed observation of embryo development. It has produced morphokinetic algorithms aimed at selecting embryos able to generate a viable pregnancy, however, such efforts have had limited success. Regardless, the potential of this technology for improving multiple aspects of the IVF process remains considerable. Specifically, TLT could be harnessed to discriminate developmentally incompetent embryos: i.e. those unable to develop to the blastocyst stage or affected by full-chromosome meiotic aneuploidies. If proven valuable, this application would prevent the non-productive use of such embryos, thereby improving laboratory and clinical efficiency and reducing patient stress and costs due to unnecessary embryo transfer and cryopreservation.
STUDY DESIGN, SIZE, DURATION: The training dataset involved embryos of PGT-A cycles cultured in Embryoscope with a single media (836 euploid and 1179 aneuploid blastocysts and 1874 arrested embryos; 2013-2020). Selection criteria were ejaculated sperm, own (not donated) fresh oocytes, trophectoderm biopsy and comprehensive-chromosome-testing to diagnose uniform aneuploidies. Out-of-sample (30% of training), internal (299 euploid and 490 aneuploid blastocysts and 680 arrested embryos; 2021-2022) and external (97 euploid, 110 aneuploid and 603 untested blastocysts and 514 arrested embryos, 2018 to early 2022) validations were conducted.
PARTICIPANTS/MATERIALS, SETTING, METHODS: A training dataset (70%) was used to define thresholds. Several models were generated by fitting outcomes to each timing (tPNa-t8) and maternal age. ROC curves pinpointed in-sample classification values associated with 95%, 99% and 99.99% true-positive rate for predicting incompetence. These values were integrated with upper limits of maternal age ranges (<35, 35-37, 38-40, 41-42, and >42 years) in logit functions to identify time cut-offs, whose accuracy was tested on the validation datasets through confusion matrices.
For developmental (in)competence, the best performing (i) tPNa cut-offs were 27.8 hpi (error-rate: 0/743), 32.6 hpi (error rate: 0/934), 26.8 hpi (error rate: 0/1178), 22.9 hpi (error-rate: 1/654, 0.1%) and 17.2 hpi (error rate: 4/423, 0.9%) in the <35, 35-37, 38-40, 41-42, and >42 years groups, respectively; (ii) tPNf cut-offs were 36.7 hpi (error rate: 0/738), 47.9 hpi (error rate: 0/921), 45.6 hpi (error rate: 1/1156, 0.1%), 44.1 hpi (error rate: 0/647) and 41.8 hpi (error rate: 0/417); (iii) t2 cut-offs were 50.9 hpi (error rate: 0/724), 49 hpi (error rate: 0/915), 47.1 hpi (error rate: 0/1146), 45.8 hpi (error rate: 0/636) and 43.9 hpi (error rate: 0/416); (iv) t4 cut-offs were 66.9 hpi (error rate: 0/683), 80.7 hpi (error rate: 0/836), 77.1 hpi (error rate: 0/1063), 74.7 hpi (error rate: 0/590) and 71.2 hpi (error rate: 0/389); and (v) t8 cut-offs were 118.1 hpi (error rate: 0/619), 110.6 hpi (error rate: 0/772), 140 hpi (error rate: 0/969), 135 hpi (error rate: 0/533) and 127.5 hpi (error rate: 0/355). tPNf and t2 showed a significant association with chromosomal (in)competence, also when adjusted for maternal age. Nevertheless, the relevant cut-offs were found to perform less well and were redundant compared with the blastocyst development cut-offs.
LIMITATIONS, REASONS FOR CAUTION: Study limits are its retrospective design and the datasets being unbalanced towards advanced maternal age cases. The potential effects of abnormal cleavage patterns were not assessed. Larger sample sizes and external validations in other clinical settings are warranted.
If confirmed by independent studies, this approach could significantly improve the efficiency of ART, by reducing the workload and patient impacts (extended culture and cleavage stage cryopreservation or transfer) associated with embryos that ultimately are developmentally incompetent and should not be considered for treatment. Pending validation, these data might be applied also in static embryo observation settings.
STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the participating institutions. The authors have no conflicts of interest to declare.
N/A.
通过结合延时成像技术(TLT)、人工智能和胚胎植入前非整倍体遗传学筛查(PGT-A),能否得出更可靠的胚胎发育无能的时间截断值?
通过多个发育阶段以及针对不同产妇年龄范围的时间截断值,可以更好地预测胚胎发育无能。
TLT有助于对胚胎发育进行持续且不受干扰的观察。它已经产生了旨在选择能够实现活产妊娠的胚胎的形态动力学算法,然而,这些努力取得的成功有限。尽管如此,这项技术在改善体外受精过程的多个方面的潜力仍然很大。具体而言,TLT可用于区分发育无能的胚胎,即那些无法发育到囊胚阶段或受全染色体减数分裂非整倍体影响的胚胎。如果被证明有价值,这种应用将避免此类胚胎的无效使用,从而提高实验室和临床效率,并减少因不必要的胚胎移植和冷冻保存给患者带来的压力和费用。
研究设计、规模、持续时间:训练数据集包括在Embryoscope中使用单一培养基培养的PGT-A周期的胚胎(836个整倍体和1179个非整倍体囊胚以及1874个发育停滞的胚胎;2013 - 2020年)。选择标准为射出的精子、自身(非捐赠)新鲜卵母细胞、滋养外胚层活检以及用于诊断统一非整倍体的全染色体检测。进行了样本外(训练样本的30%)、内部(299个整倍体和490个非整倍体囊胚以及680个发育停滞的胚胎;2021 - 2022年)和外部(97个整倍体、110个非整倍体和603个未检测的囊胚以及514个发育停滞的胚胎,2018年至2022年初)验证。
参与者/材料、设置、方法:使用训练数据集(70%)来定义阈值。通过将结果与每个时间点(tPNa - t8)和产妇年龄进行拟合,生成了几个模型。ROC曲线确定了预测无能时与95%、99%和99.99%真阳性率相关的样本内分类值。这些值与产妇年龄范围(<35、35 - 37、38 - 40、41 - 42和>42岁)的上限在逻辑函数中进行整合,以确定时间截断值,并通过混淆矩阵在验证数据集上测试其准确性。
对于发育(无)能,表现最佳的(i)tPNa截断值在<35、35 - 37、38 - 40、41 - 42和>42岁组中分别为27.8小时(错误率:0/743)、32.6小时(错误率:0/934)、26.8小时(错误率:0/1178)、22.9小时(错误率:1/654,0.1%)和17.2小时(错误率:4/423,0.9%);(ii)tPNf截断值分别为36.7小时(错误率:0/738)、47.9小时(错误率:0/921)、45.6小时(错误率:1/1156,0.1%)、44.1小时(错误率:0/647)和41.8小时(错误率:0/417);(iii)t2截断值分别为50.9小时(错误率:0/724)、49小时(错误率:0/915)、47.1小时(错误率:0/1146)、45.8小时(错误率:0/636)和43.9小时(错误率:0/416);(iv)t4截断值分别为66.9小时(错误率:0/683)、80.7小时(错误率:0/836)、77.1小时(错误率:0/1063)、74.7小时(错误率:0/590)和71.2小时(错误率:0/389);以及(v)t8截断值分别为118.1小时(错误率:0/619)、110.6小时(错误率:0/772)、140小时(错误率:0/969)、135小时(错误率:0/533)和127.5小时(错误率:0/355)。tPNf和t2与染色体(无)能存在显著关联,在调整产妇年龄后也是如此。然而,发现相关截断值的表现较差,与囊胚发育截断值相比存在冗余。
局限性、谨慎原因:研究的局限性在于其回顾性设计以及数据集在高龄产妇病例方面不均衡。未评估异常分裂模式的潜在影响。需要更大的样本量以及在其他临床环境中的外部验证。
如果独立研究证实,这种方法可以显著提高辅助生殖技术的效率,通过减少与最终发育无能且不应考虑用于治疗的胚胎相关的工作量和对患者的影响(延长培养和卵裂期冷冻保存或移植)。在验证之前,这些数据也可能应用于静态胚胎观察环境。
研究资金/利益冲突:本研究得到参与机构的支持。作者声明无利益冲突。
无。