Suppr超能文献

基于一次量子化的量子计算机上的化学反应模拟器(II)─基础处理:实现

Chemical Reaction Simulator on Quantum Computers by First Quantization (II)─Basic Treatment: Implementation.

作者信息

Takahashi Hideo, Tomaru Tatsuya, Hirano Toshiyuki, Tahara Saisei, Sato Fumitoshi

机构信息

Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Center for Exploratory Research, Research and Development Group, Hitachi Ltd., Kokubunji, Tokyo 185-8601, Japan.

出版信息

J Chem Theory Comput. 2024 Nov 12;20(21):9290-9320. doi: 10.1021/acs.jctc.4c00708. Epub 2024 Oct 25.

Abstract

Chemical simulation is a key application area that can leverage the power of quantum computers. A chemical simulator that implements a grid-based first quantization method has promising characteristics, but an implementation fully in quantum circuits seems to have not been published. Here, we present "crsQ" (chemical reaction simulator Q), which is a quantum circuit generator that generates such a chemical simulator. The generated simulator is capable of antisymmetrization of the initial wave function and time-evolution of the wave function based on the Suzuki-Trotter decomposition. The potential energy term of the Hamiltonian is implemented using arithmetic gates, such as adders, subtractors, multipliers, dividers, and square roots. Circuit diagrams and output samples are shown. The number of qubits in the circuits scales on the order of (η log η), where η is the number of electrons. Each component of the generated circuit was verified in unit tests. Along with this development, we designed frameworks to ease the development of large-scale circuits, namely, a temporary qubit allocation framework and an abstract syntax tree framework for arithmetic formulas. These frameworks are expected to be useful in large-scale quantum circuit generators.

摘要

化学模拟是一个能够利用量子计算机强大功能的关键应用领域。一种实现基于网格的一次量子化方法的化学模拟器具有良好的特性,但似乎尚未有完全在量子电路中实现的相关报道。在此,我们展示“crsQ”(化学反应模拟器Q),它是一种生成此类化学模拟器的量子电路生成器。所生成的模拟器能够基于铃木 - Trotter分解对初始波函数进行反对称化以及对波函数进行时间演化。哈密顿量的势能项使用加法器、减法器、乘法器、除法器和平方根等算术门来实现。文中展示了电路图和输出样本。电路中的量子比特数按(η log η)的量级缩放,其中η是电子数。所生成电路的每个组件都在单元测试中进行了验证。随着这一进展,我们设计了一些框架来简化大规模电路的开发,即一个临时量子比特分配框架和一个用于算术公式的抽象语法树框架。这些框架有望在大规模量子电路生成器中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/11562074/0c5bf7909e8b/ct4c00708_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验