Department of Materials, University of Oxford, Oxford OX1 3PH, UK.
Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
Sci Adv. 2023 Mar;9(9):eabo7484. doi: 10.1126/sciadv.abo7484. Epub 2023 Mar 1.
First-quantized, grid-based methods for chemistry modeling are a natural and elegant fit for quantum computers. However, it is infeasible to use today's quantum prototypes to explore the power of this approach because it requires a substantial number of near-perfect qubits. Here, we use exactly emulated quantum computers with up to 36 qubits to execute deep yet resource-frugal algorithms that model 2D and 3D atoms with single and paired particles. A range of tasks is explored, from ground state preparation and energy estimation to the dynamics of scattering and ionization; we evaluate various methods within the split-operator QFT (SO-QFT) Hamiltonian simulation paradigm, including protocols previously described in theoretical papers and our own techniques. While we identify certain restrictions and caveats, generally, the grid-based method is found to perform very well; our results are consistent with the view that first-quantized paradigms will be dominant from the early fault-tolerant quantum computing era onward.
基于第一性原理的网格方法非常适合化学建模,是量子计算机的自然选择。然而,由于它需要大量近乎完美的量子比特,因此使用当今的量子原型机来探索这种方法的威力是不切实际的。在这里,我们使用经过精确模拟的量子计算机,其最大量子比特数可达 36 个,执行深度而资源节约的算法,这些算法可以用单粒子和双粒子对来模拟 2D 和 3D 原子。我们探索了一系列任务,从基态制备和能量估计到散射和电离动力学;我们在分裂算符量子场论(SO-QFT)哈密顿模拟范例中评估了各种方法,包括之前在理论论文中描述的协议和我们自己的技术。虽然我们确定了某些限制和注意事项,但通常情况下,基于网格的方法表现非常出色;我们的结果与以下观点一致,即从早期容错量子计算时代开始,第一性原理范式将占据主导地位。