Shipman Anna, Gao Yan, Liu Desheng, Sun Shan, Zang Jingjing, Sun Peng, Syed Zoha, Bhagavathi Amol, Smith Eliot, Erickson Timothy, Hill Matthew, Neuhauss Stephan, Sui Sen-Fang, Nicolson Teresa
Department of Otolaryngology, Stanford University, Stanford, California.
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
J Neurosci. 2024 Dec 11;44(50):e0680242024. doi: 10.1523/JNEUROSCI.0680-24.2024.
Mutations in human are associated with neurodevelopmental defects, including motor delays and defective muscle tone. encodes a AAA-ATPase required for membrane scission, but how mutations in lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish , T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underlie the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.
人类中的突变与神经发育缺陷有关,包括运动迟缓和平滑肌张力缺陷。 编码膜分裂所需的一种AAA - ATP酶,但 中的突变如何导致运动功能控制受损尚不清楚。在这里,我们在斑马鱼中鉴定出一个 突变,T248I,它影响感觉运动转换。生化分析表明,T248I突变降低了Vps4a的ATP酶活性以及介导膜分裂的ESCRT细丝的解体。与Vps4a在外泌体生物发生中的作用一致, 幼虫在中枢神经系统中内体区室增大,脑室中循环外泌体数量减少。与 患者的中枢性肌张力减退形式相似,运动神经元和肌肉细胞在突变斑马鱼中功能正常。体感和前庭输入分别强烈诱发尾巴和眼睛运动。相比之下(此处原文有误,应该是In contrast), 幼虫的视动反应、前庭脊髓反射和听觉惊吓反射缺失或严重受损,表明这些回路对T248I突变更敏感。视网膜电图记录显示视网膜存在强度依赖性缺陷,听觉通路的体内钙成像确定传入神经元活动有中度降低,部分解释了突变幼虫的严重运动障碍。对 突变体中枢通路的进一步研究表明,感觉线索对下行前庭脊髓和中脑运动指令神经元的激活大大减少。我们的结果表明,感觉运动转换缺陷是由Vps4a介导的膜分裂丧失对运动反射产生深刻但选择性影响的基础。