Lv Xiali, Tian Yu, Wu Fengxia, Luan Xiaoxi, Li Fenghua, Shen Zhili, Xu Guobao, Liu Kun, Niu Wenxin
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
Nat Commun. 2024 Oct 25;15(1):9234. doi: 10.1038/s41467-024-53705-4.
Helicoid plasmonic nanoparticles with intrinsic chirality are an emerging class of artificial chiral materials with tailorable properties. The ability to extend their chiroplasmonic responses to the near-infrared (NIR) range is critically important for biomedical and nanophotonic applications, yet the rational design of such materials remains challenging. Herein, a strategy employing chiral plasmon-dielectric coupling is proposed to manipulate the chiroptical responses into the NIR region with high optical anisotropy. Through this strategy, the helicoid Au@CuO nanoparticles with structural chirality are designed and synthesized with tunable and enriched NIR chiroptical responses. Specially, a high optical anisotropy (g-factor) with a value of 0.35 is achieved in the NIR region, and multi-band chiroptical behaviors are observed. Spectral and electromagnetic simulations elucidate that strong coupling between chiroplasmonic core and chiral dielectric shell with high refractive index contributes to the rich and strong chiroptical responses, which are related to the interplay between various emerged and enhanced electric and magnetic multipolar resonance modes proved by multipole expansion analysis. Moreover, the helicoid Au@CuO nanoparticles display greater polarization rotation capability than the helicoid Au nanoparticles. This work offers mechanistic insights into chiral plasmon-dielectric coupling and suggests a general approach of creating NIR chiroplasmonic materials.
具有固有手性的螺旋等离子体纳米颗粒是一类新兴的具有可定制性质的人工手性材料。将其手性等离子体响应扩展到近红外(NIR)范围的能力对于生物医学和纳米光子学应用至关重要,然而,此类材料的合理设计仍然具有挑战性。在此,提出了一种采用手性等离子体-电介质耦合的策略,以将旋光响应操纵到具有高光各向异性的近红外区域。通过该策略,设计并合成了具有结构手性的螺旋状Au@CuO纳米颗粒,其具有可调谐且丰富的近红外旋光响应。特别地,在近红外区域实现了高达0.35的高光各向异性(g因子),并观察到多波段旋光行为。光谱和电磁模拟表明,手性等离子体核与高折射率的手性电介质壳之间的强耦合有助于产生丰富且强烈的旋光响应,这与多极展开分析所证明的各种出现并增强的电和磁多极共振模式之间的相互作用有关。此外,螺旋状Au@CuO纳米颗粒比螺旋状Au纳米颗粒表现出更大的偏振旋转能力。这项工作对手性等离子体-电介质耦合提供了机理见解,并提出了一种创建近红外手性等离子体材料的通用方法。