School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
Nano Lett. 2012 Feb 8;12(2):977-83. doi: 10.1021/nl204055r. Epub 2012 Jan 26.
We report a new approach for creating chiral plasmonic nanomaterials. A previously unconsidered, far-field mechanism is utilized which enables chirality to be conveyed from a surrounding chiral molecular material to a plasmonic resonance of an achiral metallic nanostructure. Our observations break a currently held preconception that optical properties of plasmonic particles can most effectively be manipulated by molecular materials through near-field effects. We show that far-field electromagnetic coupling between a localized plasmon of a nonchiral nanostructure and a surrounding chiral molecular layer can induce plasmonic chirality much more effectively (by a factor of 10(3)) than previously reported near-field phenomena. We gain insight into the mechanism by comparing our experimental results to a simple electromagnetic model which incorporates a plasmonic object coupled with a chiral molecular medium. Our work offers a new direction for the creation of hybrid molecular plasmonic nanomaterials that display significant chiroptical properties in the visible spectral region.
我们提出了一种制造手性等离子体纳米材料的新方法。利用了一个以前未被考虑的远场机制,使得手性能够从周围的手性分子材料传递到非手性金属纳米结构的等离子体共振。我们的观察结果打破了目前的一个观念,即等离子体粒子的光学性质可以通过近场效应最有效地通过分子材料来操纵。我们表明,非手性纳米结构的局域等离子体与周围手性分子层之间的远场电磁耦合可以比以前报道的近场现象更有效地诱导等离子体手性(高达 10^3 倍)。我们通过将实验结果与包含等离子体物体与手性分子介质耦合的简单电磁模型进行比较,深入了解了这一机制。我们的工作为在可见光谱区域显示出显著手征光学性质的混合分子等离子体纳米材料的创造提供了一个新的方向。