Suppr超能文献

场地自行车团体追逐赛中的个性化最优策略

Individualized optimal strategy in team pursuit for track cycling.

作者信息

Boillet Alice, Noble Maxence, Sachet Iris, Messonnier Laurent A, Cohen Caroline

机构信息

LadHyX, UMR 7646 du CNRS, Ecole polytechnique, 91120, Palaiseau, France.

CMAP - Centre de Mathématiques Appliquées - Ecole polytechnique, 91120, Palaiseau, France.

出版信息

Sci Rep. 2024 Oct 25;14(1):25308. doi: 10.1038/s41598-024-75963-4.

Abstract

In track cycling, performance in the team pursuit depends on the mechanical and physiological abilities of each member of the team, but also on the choice of racing strategy. Athletes must cover the 4000 m of the race, sharing the effort between them in successive relays. This raises the question of the optimum strategy. We propose a method for resolving this question by coupling a mechanical model of the race to physiological models (digital twins) of the athletes. The mechanical model enables one to predict a theoretical finishing time for a given strategy, while the physiological model enables one to determine whether or not a given strategy is feasible. By coupling the two models and using numerical optimization, an optimal strategy for a given team can then be predicted. Simplified team composition case studies are explored. For each case studied, an optimal strategy to maximize performance is obtained and composed of a set of three variables: relay lengths, power values for each relay, and the starting order of cyclists. The proposed method can be used for real athletes and extended to other disciplines.

摘要

在场地自行车赛中,团体追逐赛的成绩不仅取决于团队中每个成员的机械和生理能力,还取决于比赛策略的选择。运动员必须跑完4000米的赛程,通过连续接力在他们之间分担体力消耗。这就引出了最佳策略的问题。我们提出了一种通过将比赛的机械模型与运动员的生理模型(数字孪生模型)相结合来解决这个问题的方法。机械模型能够预测给定策略的理论完赛时间,而生理模型能够确定给定策略是否可行。通过将这两个模型相结合并使用数值优化,然后可以预测给定团队的最佳策略。我们探索了简化的团队组成案例研究。对于每个研究案例,都获得了一个使成绩最大化的最佳策略,该策略由一组三个变量组成:接力长度、每个接力的功率值以及自行车手的起跑顺序。所提出的方法可用于实际运动员,并可扩展到其他项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/648b/11512064/63a7fc6d7a7c/41598_2024_75963_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验