Suppr超能文献

计算方法在神经退行性疾病药物发现中的应用研究综述

A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases.

机构信息

Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy.

Department of Electrical and Information Engineering "Maurizio Scarano", University of Cassino and Southern Lazio, 03043 Cassino, Italy.

出版信息

Biomolecules. 2024 Oct 19;14(10):1330. doi: 10.3390/biom14101330.

Abstract

Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer's disease (AD) and Parkinson's disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.

摘要

目前,由于出生率下降和预期寿命延长,世界人口的年龄结构正在发生变化。因此,世界各地的医生必须治疗越来越多的与年龄相关的疾病,其中神经退行性疾病占很大一部分。在这种情况下,迫切需要发现新的治疗方法来对抗神经退行性变对人类健康的影响,而计算科学对于更有效的神经药物发现可能至关重要。了解参与神经发病机制的受体和其他生物分子的分子结构有助于设计新的分子作为潜在药物,用于对抗痴呆症、阿尔茨海默病 (AD) 和帕金森病 (PD) 等具有高度社会相关性的疾病,仅举几例。然而,缺乏关于替代方法的优缺点的综合指南,导致该领域支离破碎和脱节,错失了提高性能和实现成功应用的机会。本文旨在总结一些基于计算方法的用于神经药物开发的创新策略。特别是,综述了最近在配体和基于靶点的方法中基于计算方法的新应用和最新进展,强调了计算方法在神经退行性疾病神经药物发现中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a3/11506269/0ba85a75a99e/biomolecules-14-01330-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验