Suppr超能文献

利用化学生态计算机辅助选择从云雾林植物中寻找降血糖天然产物。

Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection.

机构信息

Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico.

Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico.

出版信息

Int J Mol Sci. 2024 Oct 10;25(20):10881. doi: 10.3390/ijms252010881.

Abstract

The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. (Malvaceae) stood out for its DPP-IV selective inhibition . A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in compared to , among which acanthoside D and -tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry.

摘要

云雾林(CF)是一个生物多样性极高的生态系统,是探索具有潜在药用活性化合物的未被充分了解的植物的热点地区。由于缺乏足够的民族药理学信息,制定合理选择植物进行实验研究的策略至关重要。为此,我们创建了一个 CF 代谢产物库,并进行了基于配体的虚拟筛选,以鉴定具有潜在降血糖活性的分子。从最有前途的植物科中,收集植物,制备甲醇提取物,并通过体外α-淀粉酶、α-葡萄糖苷酶和二肽基肽酶 IV(DPP-IV)抑制测定评估降血糖活性。进行代谢组学分析以鉴定具有最佳抑制活性谱的物种中的主要代谢物,并使用整体分子对接评估它们与分子靶标的亲和力。该策略确定了 12 种具有降血糖活性的植物(来自四个植物科)。(锦葵科)因其对 DPP-IV 的选择性抑制而脱颖而出。化学特征的比较导致在 中鉴定出二十七种代谢物过度积累,其中,山奈苷 D 和 -tiliroside 由于与 DPP-IV 相关氨基酸的特异性分子间相互作用,对其潜在的选择性抑制作用值得关注。本研究中使用的工作流程为鉴定新型生物活性天然来源提供了一种新的靶向策略,这可以补充天然产物化学中常用的传统选择标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9dc/11507857/9f39699998d9/ijms-25-10881-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验