van der Lelij Thies J N, Grootjans Willem, Braamhaar Kevin J, de Witte Pieter Bas
Department of Orthopaedics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
Children (Basel). 2024 Sep 27;11(10):1182. doi: 10.3390/children11101182.
Assessment of long leg radiographs (LLRs) in pediatric orthopedic patients is an important but time-consuming routine task for clinicians. The goal of this study was to evaluate the performance of artificial intelligence (AI)-based leg angle measurement assistant software (LAMA) in measuring LLRs in pediatric patients, compared to traditional manual measurements.
Eligible patients, aged 11 to 18 years old, referred for LLR between January and March 2022 were included. The study comprised 29 patients (58 legs, 377 measurements). The femur length, tibia length, full leg length (FLL), leg length discrepancy (LLD), hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA) were measured automatically using LAMA and compared to manual measurements of a senior pediatric orthopedic surgeon and an advanced practitioner in radiography.
Correct landmark placement with AI was achieved in 76% of the cases for LLD measurements, 88% for FLL and femur length, 91% for mLDFA, 97% for HKA, 98% for mMPTA, and 100% for tibia length. Intraclass correlation coefficients (ICCs) indicated moderate to excellent agreement between AI and manual measurements, ranging from 0.73 (95% confidence interval (CI): 0.54 to 0.84) to 1.00 (95%CI: 1.00 to 1.00).
In cases of correct landmark placement, AI-based algorithm measurements on LLRs of pediatric patients showed high agreement with manual measurements.
对于儿科骨科患者,评估长腿X线片(LLRs)是临床医生一项重要但耗时的常规任务。本研究的目的是评估基于人工智能(AI)的腿角测量辅助软件(LAMA)在测量儿科患者LLRs方面的性能,并与传统手动测量进行比较。
纳入2022年1月至3月因LLR检查而转诊的11至18岁合格患者。该研究包括29名患者(58条腿,377次测量)。使用LAMA自动测量股骨长度、胫骨长度、全腿长度(FLL)、腿长差异(LLD)、髋-膝-踝角(HKA)、机械性股骨远端外侧角(mLDFA)和机械性胫骨近端内侧角(mMPTA),并与一位资深儿科骨科医生和一位放射学高级从业者的手动测量结果进行比较。
在LLD测量中,76%的病例通过人工智能实现了正确的标志点放置;FLL和股骨长度为88%,mLDFA为91%,HKA为97%,mMPTA为98%,胫骨长度为100%。组内相关系数(ICCs)表明人工智能与手动测量之间具有中等至高度的一致性,范围从0.73(95%置信区间(CI):0.54至0.84)到1.00(95%CI:1.00至1.00)。
在标志点放置正确的情况下,基于人工智能算法对儿科患者LLRs的测量结果与手动测量结果高度一致。