Tong Lei, Fang Jiandong, Wang Xiuling, Zhao Yudong
College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China.
Inner Mongolia Key Laboratory of Perceptive Technology and Intelligent Systems, Hohhot 010080, China.
Animals (Basel). 2024 Oct 17;14(20):2993. doi: 10.3390/ani14202993.
In smart ranch management, cattle behavior recognition and tracking play a crucial role in evaluating animal welfare. To address the issues of missed and false detections caused by inter-cow occlusions and infrastructure obstructions in the barn environment, this paper proposes a multi-object tracking method called YOLO-BoT. Built upon YOLOv8, the method first integrates dynamic convolution (DyConv) to enable adaptive weight adjustments, enhancing detection accuracy in complex environments. The C2f-iRMB structure is then employed to improve feature extraction efficiency, ensuring the capture of essential features even under occlusions or lighting variations. Additionally, the Adown downsampling module is incorporated to strengthen multi-scale information fusion, and a dynamic head (DyHead) is used to improve the robustness of detection boxes, ensuring precise identification of rapidly changing target positions. To further enhance tracking performance, DIoU distance calculation, confidence-based bounding box reclassification, and a virtual trajectory update mechanism are introduced, ensuring accurate matching under occlusion and minimizing identity switches. Experimental results demonstrate that YOLO-BoT achieves a mean average precision (mAP) of 91.7% in cattle detection, with precision and recall increased by 4.4% and 1%, respectively. Moreover, the proposed method improves higher order tracking accuracy (HOTA), multi-object tracking accuracy (MOTA), multi-object tracking precision (MOTP), and IDF1 by 4.4%, 7%, 1.7%, and 4.3%, respectively, while reducing the identity switch rate (IDS) by 30.9%. The tracker operates in real-time at an average speed of 31.2 fps, significantly enhancing multi-object tracking performance in complex scenarios and providing strong support for long-term behavior analysis and contactless automated monitoring.
在智能牧场管理中,牛的行为识别与跟踪在评估动物福利方面发挥着至关重要的作用。为解决牛舍环境中由于牛之间的遮挡和基础设施阻碍导致的漏检和误检问题,本文提出了一种名为YOLO - BoT的多目标跟踪方法。该方法基于YOLOv8构建,首先集成了动态卷积(DyConv)以实现自适应权重调整,提高在复杂环境中的检测精度。然后采用C2f - iRMB结构来提高特征提取效率,确保即使在遮挡或光照变化的情况下也能捕捉到关键特征。此外,引入了Adown下采样模块以加强多尺度信息融合,并使用动态头部(DyHead)来提高检测框的鲁棒性,确保精确识别快速变化的目标位置。为进一步提高跟踪性能,引入了DIoU距离计算、基于置信度的边界框重新分类和虚拟轨迹更新机制,确保在遮挡情况下的准确匹配并最小化身份切换。实验结果表明,YOLO - BoT在牛检测中实现了91.7%的平均精度均值(mAP),精确率和召回率分别提高了4.4%和1%。此外,所提出的方法分别将高阶跟踪精度(HOTA)、多目标跟踪精度(MOTA)、多目标跟踪精确率(MOTP)和IDF1提高了4.4%、7%、1.7%和4.3%,同时将身份切换率(IDS)降低了30.9%。该跟踪器以平均31.2帧每秒的速度实时运行,显著提高了复杂场景下的多目标跟踪性能,并为长期行为分析和非接触式自动监测提供了有力支持。