文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8.

作者信息

Gong He, Liu Jingyi, Li Zhipeng, Zhu Hang, Luo Lan, Li Haoxu, Hu Tianli, Guo Ying, Mu Ye

机构信息

College of Information Technology, Jilin Agricultural University, Changchun 130118, China.

Jilin Province Agricultural Internet of Things Technology Collaborative Innovation Center, Changchun 130118, China.

出版信息

Animals (Basel). 2024 Sep 11;14(18):2640. doi: 10.3390/ani14182640.


DOI:10.3390/ani14182640
PMID:39335230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11429449/
Abstract

As the sika deer breeding industry flourishes on a large scale, accurately assessing the health of these animals is of paramount importance. Implementing posture recognition through target detection serves as a vital method for monitoring the well-being of sika deer. This approach allows for a more nuanced understanding of their physical condition, ensuring the industry can maintain high standards of animal welfare and productivity. In order to achieve remote monitoring of sika deer without interfering with the natural behavior of the animals, and to enhance animal welfare, this paper proposes a sika deer individual posture recognition detection algorithm GFI-YOLOv8 based on YOLOv8. Firstly, this paper proposes to add the iAFF iterative attention feature fusion module to the C2f of the backbone network module, replace the original SPPF module with AIFI module, and use the attention mechanism to adjust the feature channel adaptively. This aims to enhance granularity, improve the model's recognition, and enhance understanding of sika deer behavior in complex scenes. Secondly, a novel convolutional neural network module is introduced to improve the efficiency and accuracy of feature extraction, while preserving the model's depth and diversity. In addition, a new attention mechanism module is proposed to expand the receptive field and simplify the model. Furthermore, a new pyramid network and an optimized detection head module are presented to improve the recognition and interpretation of sika deer postures in intricate environments. The experimental results demonstrate that the model achieves 91.6% accuracy in recognizing the posture of sika deer, with a 6% improvement in accuracy and a 4.6% increase in mAP50 compared to YOLOv8n. Compared to other models in the YOLO series, such as YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv8s, YOLOv9, and YOLOv10, this model exhibits higher accuracy, and improved mAP50 and mAP50-95 values. The overall performance is commendable, meeting the requirements for accurate and rapid identification of the posture of sika deer. This model proves beneficial for the precise and real-time monitoring of sika deer posture in complex breeding environments and under all-weather conditions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/ff651755579e/animals-14-02640-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/32cbdedb162b/animals-14-02640-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/8415e22dafaa/animals-14-02640-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/1e086f45040e/animals-14-02640-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/49b025223b6e/animals-14-02640-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/9b0b8c903957/animals-14-02640-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/a9d0de01c000/animals-14-02640-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/9ffa044b2727/animals-14-02640-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/1735197c7230/animals-14-02640-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/e5d624089902/animals-14-02640-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/6c26dfab1b04/animals-14-02640-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/2ee3b1423433/animals-14-02640-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/102c9a13c038/animals-14-02640-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/75e2461be8ac/animals-14-02640-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/ff651755579e/animals-14-02640-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/32cbdedb162b/animals-14-02640-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/8415e22dafaa/animals-14-02640-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/1e086f45040e/animals-14-02640-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/49b025223b6e/animals-14-02640-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/9b0b8c903957/animals-14-02640-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/a9d0de01c000/animals-14-02640-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/9ffa044b2727/animals-14-02640-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/1735197c7230/animals-14-02640-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/e5d624089902/animals-14-02640-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/6c26dfab1b04/animals-14-02640-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/2ee3b1423433/animals-14-02640-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/102c9a13c038/animals-14-02640-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/75e2461be8ac/animals-14-02640-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c061/11429449/ff651755579e/animals-14-02640-g014.jpg

相似文献

[1]
GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8.

Animals (Basel). 2024-9-11

[2]
Chili Pepper Object Detection Method Based on Improved YOLOv8n.

Plants (Basel). 2024-8-28

[3]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[4]
YOLOv8-MU: An Improved YOLOv8 Underwater Detector Based on a Large Kernel Block and a Multi-Branch Reparameterization Module.

Sensors (Basel). 2024-5-1

[5]
BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8.

Sensors (Basel). 2023-10-10

[6]
Improved Chinese Giant Salamander Parental Care Behavior Detection Based on YOLOv8.

Animals (Basel). 2024-7-17

[7]
Improved YOLOv8 Model for Lightweight Pigeon Egg Detection.

Animals (Basel). 2024-4-19

[8]
A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8.

Front Plant Sci. 2024-6-5

[9]
Real-Time Detection of Unauthorized Unmanned Aerial Vehicles Using SEB-YOLOv8s.

Sensors (Basel). 2024-6-17

[10]
Improved YOLOv8 for Gas-Flame State Recognition under Low-Pressure Conditions.

Sensors (Basel). 2024-10-2

引用本文的文献

[1]
YOLOv8-CBAM: a study of sheep head identification in Ujumqin sheep.

Front Vet Sci. 2025-2-6

本文引用的文献

[1]
Research on Automatic Recognition of Dairy Cow Daily Behaviors Based on Deep Learning.

Animals (Basel). 2024-1-30

[2]
Deep learning strategies with CReToNeXt-YOLOv5 for advanced pig face emotion detection.

Sci Rep. 2024-1-19

[3]
Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration.

Animals (Basel). 2021-4-30

[4]
Application of Microfluidic Chip Technology in Food Safety Sensing.

Sensors (Basel). 2020-3-24

[5]
Squeeze-and-Excitation Networks.

IEEE Trans Pattern Anal Mach Intell. 2020-8

[6]
Image features and DUS testing traits for peanut pod variety identification and pedigree analysis.

J Sci Food Agric. 2018-12-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索